
libp2p-pubsub-benchmark
Benchmarking asyncmachine-go based implementation of libp2p-pubsub from
github.com/pancsta/go-libp2p-pubsub.

TestSimpleDiscovery #1
Versions being compared

• origin
• state based (RPC as a channel)

Steps taken in the test

1. Init a pubsub network of {h} hosts
2. Subscribe with all but host0
3. Publish a single message from host0
4. Publish random msgs - {m} per host

Variables

• h:hosts Num. of hosts in the pubsub network
– 5 to 20
– step by 5

• m:messages Num. of sent messages (per host)
– 20 to 100
– step by 20

Machines

1. PubSub host (20 states)
2. Discovery (10 states)
3. DiscoveryBootstrapFlow (5 states)
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Test duration

Created goroutines
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Final goroutines

Allocated memory
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Memory ceiling

Final memory
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GCed memory

Failure rate (states)
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Failure rate (origin)

Conclusions
Although the duration and peak memory usage has a reasonable overhead of
~10%, the failure rate needs further looking into, along with final goroutines.

Footer
Version 20240601-v5.0.0 from github.com/pancsta/go-libp2p-pubsub-
benchmark
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