
libp2p-pubsub-benchmark
Benchmarking asyncmachine-go based implementation of libp2p-pubsub from
github.com/pancsta/go-libp2p-pubsub.

TestSimpleDiscovery #1
Versions being compared

• origin
• state based (RPC as a channel)

Steps taken in the test

1. Init a pubsub network of {h} hosts
2. Subscribe with all but host0
3. Publish a single message from host0
4. Publish random msgs - {m} per host

Variables

• h:hosts Num. of hosts in the pubsub network
– 5 to 20
– step by 5

• m:messages Num. of sent messages (per host)
– 20 to 100
– step by 20

Machines

1. PubSub host (20 states)
2. Discovery (10 states)
3. DiscoveryBootstrapFlow (5 states)

1

https://github.com/pancsta/asyncmachine-go
https://github.com/libp2p/go-libp2p-pubsub
https://github.com/pancsta/go-libp2p-pubsub


Test duration

Created goroutines

2



Final goroutines

Allocated memory

3



Memory ceiling

Final memory

4



GCed memory

Failure rate (states)

5



Failure rate (origin)

Conclusions
Although the duration and peak memory usage has a reasonable overhead of
~10%, the failure rate needs further looking into, along with final goroutines.

Footer
Version 20240601-v5.0.0 from github.com/pancsta/go-libp2p-pubsub-
benchmark

6

https://github.com/pancsta/go-libp2p-pubsub-benchmark
https://github.com/pancsta/go-libp2p-pubsub-benchmark

	libp2p-pubsub-benchmark
	TestSimpleDiscovery #1
	Test duration
	Created goroutines
	Final goroutines
	Allocated memory
	Memory ceiling
	Final memory
	GCed memory
	Failure rate (states)
	Failure rate (origin)

	Conclusions
	Footer


