-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1.two-sum.cpp
96 lines (93 loc) · 1.85 KB
/
1.two-sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
// @before-stub-for-debug-begin
#include <vector>
#include <string>
#include "commoncppproblem1.h"
using namespace std;
// @before-stub-for-debug-end
/*
* @lc app=leetcode id=1 lang=cpp
*
* [1] Two Sum
*
* https://leetcode.com/problems/two-sum/description/
*
* algorithms
* Easy (47.99%)
* Likes: 27380
* Dislikes: 876
* Total Accepted: 5.6M
* Total Submissions: 11.6M
* Testcase Example: '[2,7,11,15]\n9'
*
* Given an array of integers nums and an integer target, return indices of the
* two numbers such that they add up to target.
*
* You may assume that each input would have exactly one solution, and you may
* not use the same element twice.
*
* You can return the answer in any order.
*
*
* Example 1:
*
*
* Input: nums = [2,7,11,15], target = 9
* Output: [0,1]
* Output: Because nums[0] + nums[1] == 9, we return [0, 1].
*
*
* Example 2:
*
*
* Input: nums = [3,2,4], target = 6
* Output: [1,2]
*
*
* Example 3:
*
*
* Input: nums = [3,3], target = 6
* Output: [0,1]
*
*
*
* Constraints:
*
*
* 2 <= nums.length <= 10^4
* -10^9 <= nums[i] <= 10^9
* -10^9 <= target <= 10^9
* Only one valid answer exists.
*
*
*
* Follow-up: Can you come up with an algorithm that is less than O(n^2) time
* complexity?
*/
// @lc code=start
class Solution
{
public:
vector<int> twoSum(vector<int> &nums, int target)
{
vector<int> index;
int size = nums.size();
for (int i = 0; i < size; i++)
{
int k = target - nums[i];
for (int j = i + 1; j < size; j++)
{
if (nums[j] == k)
{
index.push_back(i);
index.push_back(j);
break;
}
}
if (index.size() == 2)
break;
}
return index;
}
};
// @lc code=end