-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathestimators.py
198 lines (177 loc) · 6.53 KB
/
estimators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin, TransformerMixin
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
from sklearn.utils.multiclass import unique_labels
from sklearn.metrics import euclidean_distances
from sklearn.svm import SVC
class QuantumKernelEstimator(BaseEstimator):
""" A template estimator to be used as a reference implementation.
For more information regarding how to build your own estimator, read more
in the :ref:`User Guide <user_guide>`.
Parameters
----------
demo_param : str, default='demo_param'
A parameter used for demonstation of how to pass and store paramters.
Examples
--------
>>> from skltemplate import TemplateEstimator
>>> import numpy as np
>>> X = np.arange(100).reshape(100, 1)
>>> y = np.zeros((100, ))
>>> estimator = TemplateEstimator()
>>> estimator.fit(X, y)
TemplateEstimator(demo_param='demo_param')
"""
def __init__(self, C=10, p=0, mu=10):
self.C = C
self.p = p
self.mu = mu
self.clf = SVC(kernel='precomputed', C=C, random_state=76)
def fit(self, X, y):
"""A reference implementation of a fitting function.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The training input samples.
y : array-like, shape (n_samples,) or (n_samples, n_outputs)
The target values (class labels in classification, real numbers in
regression).
Returns
-------
self : object
Returns self.
"""
#X, y = check_X_y(X, y, accept_sparse=True)
K = np.exp(-self.mu * (self.p * X[:,:,0] + (1 - self.p) * X[:,:,1]))
self.clf.fit(K, y)
self.is_fitted_ = True
# `fit` should always return `self`
return self
def predict(self, X):
""" A reference implementation of a predicting function.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The training input samples.
Returns
-------
y : ndarray, shape (n_samples,)
Returns an array of ones.
"""
K = np.exp(-self.mu * (self.p * X[:,:,0] + (1 - self.p) * X[:,:,1]))
#X = check_array(X, accept_sparse=True)
check_is_fitted(self, 'is_fitted_')
return self.clf.predict(K)
class TemplateClassifier(ClassifierMixin, BaseEstimator):
""" An example classifier which implements a 1-NN algorithm.
For more information regarding how to build your own classifier, read more
in the :ref:`User Guide <user_guide>`.
Parameters
----------
demo_param : str, default='demo'
A parameter used for demonstation of how to pass and store paramters.
Attributes
----------
X_ : ndarray, shape (n_samples, n_features)
The input passed during :meth:`fit`.
y_ : ndarray, shape (n_samples,)
The labels passed during :meth:`fit`.
classes_ : ndarray, shape (n_classes,)
The classes seen at :meth:`fit`.
"""
def __init__(self, demo_param='demo'):
self.demo_param = demo_param
def fit(self, X, y):
"""A reference implementation of a fitting function for a classifier.
Parameters
----------
X : array-like, shape (n_samples, n_features)
The training input samples.
y : array-like, shape (n_samples,)
The target values. An array of int.
Returns
-------
self : object
Returns self.
"""
# Check that X and y have correct shape
X, y = check_X_y(X, y)
# Store the classes seen during fit
self.classes_ = unique_labels(y)
self.X_ = X
self.y_ = y
# Return the classifier
return self
def predict(self, X):
""" A reference implementation of a prediction for a classifier.
Parameters
----------
X : array-like, shape (n_samples, n_features)
The input samples.
Returns
-------
y : ndarray, shape (n_samples,)
The label for each sample is the label of the closest sample
seen during fit.
"""
# Check is fit had been called
check_is_fitted(self, ['X_', 'y_'])
# Input validation
X = check_array(X)
closest = np.argmin(euclidean_distances(X, self.X_), axis=1)
return self.y_[closest]
class TemplateTransformer(TransformerMixin, BaseEstimator):
""" An example transformer that returns the element-wise square root.
For more information regarding how to build your own transformer, read more
in the :ref:`User Guide <user_guide>`.
Parameters
----------
demo_param : str, default='demo'
A parameter used for demonstation of how to pass and store paramters.
Attributes
----------
n_features_ : int
The number of features of the data passed to :meth:`fit`.
"""
def __init__(self, demo_param='demo'):
self.demo_param = demo_param
def fit(self, X, y=None):
"""A reference implementation of a fitting function for a transformer.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The training input samples.
y : None
There is no need of a target in a transformer, yet the pipeline API
requires this parameter.
Returns
-------
self : object
Returns self.
"""
X = check_array(X, accept_sparse=True)
self.n_features_ = X.shape[1]
# Return the transformer
return self
def transform(self, X):
""" A reference implementation of a transform function.
Parameters
----------
X : {array-like, sparse-matrix}, shape (n_samples, n_features)
The input samples.
Returns
-------
X_transformed : array, shape (n_samples, n_features)
The array containing the element-wise square roots of the values
in ``X``.
"""
# Check is fit had been called
check_is_fitted(self, 'n_features_')
# Input validation
X = check_array(X, accept_sparse=True)
# Check that the input is of the same shape as the one passed
# during fit.
if X.shape[1] != self.n_features_:
raise ValueError('Shape of input is different from what was seen'
'in `fit`')
return np.sqrt(X)