This app template will help you build a multi-modal search service using GPT-4o
with Metadata Extraction and Vector Index. It uses Pathway for indexing and retrieving slides from PowerPoint and PDF presentations.
How is this different?
- Build highly accurate RAG pipelines powered by indexes that are updated in real-time.
- All of the steps, including parsing, embedding and indexing happen locally on your machine (local or cloud).
- Pathway uses vision language models to understand and index your presentations and PDFs, automatically updating as changes are made.
- Get started with a minimalistic and production-ready approach.
Boost productivity with accurate search across your PowerPoints, PDFs, and Slides all within your work environment. Try out the demo here.
Check the .env.example
, create a new .env
file and fill in the template.
For a quick start, you need to only change the following fields:
PATHWAY_LICENSE_KEY
OPENAI_API_KEY
This app template is available for free via Pathway Scale. Get your license key here and fill in the PATHWAY_LICENSE_KEY
here in the .env
file.
To learn more about configuring the input sources, how to overcome OpenAI limits and other information, check out the configuration section below.
Note: Pathway API is only used for logging basic statistics, everything happens and stays in your computer, except the OpenAI API calls. No personal or private data will be sent to Pathway servers. Handling of the data, processing, parsing and indexing are done locally.
1) Improved Efficiency:
- Save Efforts: You no longer need to manually sift through countless presentations.
- Faster Information Retrieval: Instantly find specific information with a few keywords or descriptive prompts, saving you time when preparing for presentations or reviewing past projects.
2) Enhanced Organization
- Automated Categorization: You can organize your slide library by topic, project, or other criteria. Configure the schema file to customize the parsed fields.
3) Enhanced Reliability
- Automatic Updates: Hybrid indexes update automatically whenever a new slide is added or removed, ensuring your information is always current and accurate.
4) Automated Slide Parsing:
- Process PPTX and PDF slide decks with vision language models to extract the content. (The default setup loads PDF's).
5) Flexible Data Sources:
- Compatible with local directories, SharePoint, Google Drive, and other Pathway connectors, ensuring a wide range of application scenarios can be supported.
By automating the extraction and retrieval of slide information, this app addresses the critical pain point of managing and utilizing extensive slide decks efficiently, enhancing productivity and information accuracy for sales teams.
The architecture of the Slides AI Search App is designed to connect various local or cloud repositories, transforming and indexing slides for efficient querying. It supports integration with closed and open-source LLMs for enhanced search capabilities.
This demo consists of three parts:
app.py
: Pathway app that handles parsing, indexing and backend.nginx
: File server that hosts images to be consumed by the UI.UI
: A Streamlit UI for interacting with the app.
- Data Sources:
- The application reads slide files (PPTX and PDF) from a specified directory. The directory is set to
./data/
in theapp.py
file. - In the default app setup, the connected folder is a local file folder. You can add more folders and file sources, such as Google Drive or Sharepoint, by changing configuration in
app.yaml
. - More inputs can be added by configuring the
sources
list in theapp.yaml
.
- The application reads slide files (PPTX and PDF) from a specified directory. The directory is set to
- Parsing:
- The
SlideParser
from Pathway is used to parse the slides. The parser is configured to parse a text description and schema that is defined in theapp.yaml
. - Our example schema includes fields such as
category
,tags
,title
,main_color
,language
, andhas_images
. This can be modified for specific use cases. - Note that, UI is configured to make use of two extracted fields
category
andlanguage
, these need to be kept for the UI to work. However, the app can still be used without the UI with different schemas or no parsed schema.
- The
- Embedding:
- Parsed slide content is embedded with the OpenAI's
text-embedding-ada-002
embedder. - The embeddings are then stored in Pathway's vector store using the
SlidesVectorStoreServer
.
- Parsed slide content is embedded with the OpenAI's
- Metadata Handling:
- Images and files are dumped into local directories (
storage/pw_dump_images
andstorage/pw_dump_files
). - Each slide gets a unique ID. This helps with opening files and images from the UI.
- Images and files are dumped into local directories (
- Retrieval Augmented Generation (RAG):
- The
DeckRetriever
class builds the backend, handling all steps of the application from parsing files to serving the endpoints. Refer to the API docs for more information.
- The
This folder contains several components necessary for setting up and running the Sales Slide RAG application:
-
app.py:
- The main application that sets up the slide search functionality. It initializes the OpenAI vision-language model, slide parser, vector store, and initializes the DeckRetriever for handling queries.
-
app.yaml:
- Defines data sources, OpenAI vision-language model configuration, and other key settings.
- Defines the schema for parsing the slides and including fields such as
category
,tags
,title
,main_color
,language
, andhas_images
. These fields will be appended to themetadata
, if you prefer to also add them totext
field, setinclude_schema_in_text
ofSlideParser
toTrue
. - Note: If you intend the use the default UI,
category
and thelanguage
fields in the schema are needed for the filtering options in the UI. The UI will not function properly without them.
-
.env:
- Config file for the environment variables, such as the OpenAI API key and Pathway key.
-
OpenAI API Key:
- Get an API key from the OpenAI’s API Key Management page. Keep this API key secure.
- Configure your key in the
.env
file. - You can refer to the stub file
.env.example
in this repository. - Note: This is only needed in OpenAI LLMs and embedders. It is also possible to use other multi-modal, local LLMs and embedders.
OpenAI API Usage:
- This app relies on
gpt-4o
model for image parsing. OpenAI currently limits the usage to paid users only. It is possible to use any other model (including local models) with the modules under thepathway.xpacks
. - If you are experiencing API throttle, you can set the
capacity
parameter of the LLM instancellms.OpenAIChat
to be lower. This parameter defines the number of parallel requests. Or, it is possible to disable parallel requests and only parse sequentially by changing therun_mode
in theSlideParser
torun_mode="sequential"
instead of the"parallel"
. - Update: The newly released
gpt-4o-mini
model has a similar image understanding performance at lower costs, it is also another good option.
-
Pathway’s License Key:
- This app template is available for free via Pathway Scale.
- Get your license key here.
- Note: Pathway API is only used for logging basic statistics, everything happens and stays in your computer except the OpenAI API calls. No personal or private data will be sent to Pathway servers.
By default, the app takes the files under the ./data/
folder as input. Inputs can be set by adding more entries to the sources
list under the app.yaml
.
It is possible to configure the app to use any kind of input, Google Drive
, Microsoft 365 SharePoint
, or a local directory
to name a few.
You can also use other kind of data sources using the connectors provided by Pathway.
Pathway polls the changes with low latency. So, if something changes in the tracked files, the corresponding change is reflected in real-time, and search results are updated accordingly. To learn more about the data sources, you can check out demo question answering
First, clone the Pathway LLM App Repository
git clone https://github.com/pathwaycom/llm-app.git
Make sure you are in the right directory:
cd examples/pipelines/slides_ai_search
Note: If your OpenAI API usage is throttled, you may want to change the
run_mode
in theSlideParser
torun_mode="sequential"
instead of the"parallel"
.
Build the Docker with:
docker compose build
And, run with:
docker compose up
This will start all three components of the demo. This deployment method is recommended for production use.
After Docker is running, you will see a stream of logs of your files being parsed.
On your browser, visit http://localhost:8501
to access the UI.
Here, you will see a search bar, some filters, and information about the indexed documents on the left side.
UI is not a necessary component, especially for developers. If you are interested in building your own app, check out the following ways to use the app:
First, let's check the indexed files:
curl -X 'POST' 'http://0.0.0.0:8000/v1/pw_list_documents' -H 'accept: */*' -H 'Content-Type: application/json'
This will return a list of metadata from the indexed files.
Now, let's search through our slides:
curl -X 'POST' 'http://0.0.0.0:8000/v1/pw_ai_answer' -H 'accept: */*' -H 'Content-Type: application/json' -d '{
"prompt": "diagrams that contain value propositions"
}'
This will search through our files, and return parsed slides with the text
, slide_id
and other metadata
(also including the parsed schema).
Import RAGClient with:
from pathway.xpacks.llm.question_answering import RAGClient
Initialize the client:
# conn = RAGClient(url=f"http://{PATHWAY_HOST}:{PATHWAY_PORT}")
# with the default config
conn = RAGClient(url=f"http://localhost:8000")
List the indexed files:
conn.pw_list_documents()
[{'path': 'data/slide.pdf'}, ...
Query the app:
conn.pw_ai_answer("introduction slide")
[{'dist': 0.47761982679367065, 'metadata': ...
To run the app fully locally, without needing any API access, we use vLLM and open source embedder from the HuggingFace.
We use Phi 3 Vision for its relatively small size and good performance. It is possible to use any other VLM.
- Download and Install vLLM:
See the installation page.
- Run the model:
The following command will run the Phi 3 vision model and mimic the OpenAI API.
python -m vllm.entrypoints.openai.api_server --model microsoft/Phi-3-vision-128k-instruct --trust-remote-code --dtype=half --image-input-type pixel_values --image-token-id=32044 --image-input-shape=1,3,1008,1344 --image-feature-size=1921 --max-model-len=42500 --gpu-memory-utilization 0.9 --swap-space 16 --max-num-seqs 65
Check if the model is available with:
curl http://localhost:8000/v1/completions \ns \
-H "Content-Type: application/json" \
-d '{
"model": "microsoft/Phi-3-vision-128k-instruct",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
llm: !pw.xpack.llm.llms.OpenAIChat
model: "microsoft/Phi-3-vision-128k-instruct"
temperature: 0.0
capacity: 1
base_url: "http://localhost:8000/v1"
api_key: "ignore the key, not needed"
cache_strategy: !DiskCache
retry_strategy: !ExponentialBackoffRetryStrategy
max_retries: 3
This will use your local Phi 3 vision model as the LLM for parsing the slides.
Here, we can check MTEB Leaderboard to find a good-performing embedder model.
From performance/computational-cost standpoint, avsolatorio/GIST-Embedding-v0
, avsolatorio/GIST-small-Embedding-v0
, mixedbread-ai/mxbai-embed-large-v1
, Alibaba-NLP/gte-large-en-v1.5
are some of the better models.
Here, we go with the avsolatorio/GIST-small-Embedding-v0
.
Note that, larger models may take longer to process the inputs.
We replace the embedder
with the following embedding model in app.yaml
:
$embedding_model: "avsolatorio/GIST-small-Embedding-v0"
embedder: !pw.xpack.llms.embedders.SentenceTransformerEmbedder
model: $embedding_model
call_kwargs:
show_progress_bar: false
Running the whole demo without Docker is a bit tricky as there are three components.
-
Download and Install LibreOffice:
- Download LibreOffice from the LibreOffice website.
- Follow the installation instructions specific to your operating system. \
-
Verify LibreOffice Installation:
-
Download LibreOffice from the LibreOffice website.
-
Open a terminal or command prompt and run the following command:
-
You should see the LibreOffice version information, indicating LibreOffice is installed correctly.
Purpose: LibreOffice helps with converting PPTX files into PDFs, which is essential for the document processing workflow in the Slides AI Search App.
-
If you are on Windows, please refer to the running with Docker section below.
To run the Pathway app without the UI,
python app.py
Let's discuss how we can help you build a powerful, customized RAG application. Reach us here to talk or request a demo!
I am getting OpenAI API throttle limit errors.
- You can change
run_mode
inSlideParser
torun_mode="sequential"
. This will parse images one by one, however, this will significantly slow down the parsing stage.
UI shows that my file is being indexed, but I don't have that file in the inputs.
- App mounts
storage
folder from the Docker to the local file system. This helps the file server serve the content. This folder is not cleaned between the runs, files from the previous runs will be staying here. You can remove the folder after closing the app to get rid of these.
Can I use other vision LMs or LLMs?
- Yes, you can configure the
OpenAIChat
to reach local LLMs or swap it with any other LLM wrappers (such asLiteLLMChat
) to use other models. Make sure your model of choice supports vision inputs.
Can I persist the cache between the runs?
- Yes, you can uncomment the
- ./Cache:/app/Cache
under theapp:/volumes:
section inside thedocker-compose.yml
to allow caching between the runs. You will see that requests are not repeated in the next runs.