-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_gen.py
312 lines (279 loc) · 13.4 KB
/
generate_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
from curses import noecho
import os
import json
import logging
import random
import time
import copy
from tqdm import tqdm
import pickle as pkl
import numpy as np
from argparse import ArgumentParser
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from transformers import (
BartTokenizer,
BartConfig,
LogitsProcessorList,
MinLengthLogitsProcessor,
BeamSearchScorer,
TopKLogitsWarper,
TemperatureLogitsWarper,
NoRepeatNGramLogitsProcessor)
from transformers.modeling_outputs import BaseModelOutput
from model.VSBart import VSTARBARTGenerationModel
from data.dataset import DataSet, collate_fn, get_dataset, build_input_from_segments
from utils.eval import evaluate
from utils.utils import rouge_n
SPECIAL_TOKENS = ["<s>", "</s>", "<text>", "<sep>", "<video>", "<pad>"]
SPECIAL_TOKENS_DICT = {'bos_token': "<s>", 'eos_token': "</s>", 'additional_special_tokens': ["<text>","<sep>","<video>"], 'pad_token': "<pad>"}
MODEL_INPUTS = ["input_ids", "token_type_ids","lm_labels"]
PADDED_INPUTS = ["input_ids", "token_type_ids","lm_labels"]
def set_seed(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def padding(seq, pad_token, limit=1020, ft=False):
max_len = max([i.size(0) for i in seq])
max_len = min(max_len, limit)
if ft:
result = torch.ones((len(seq), max_len)).float() * pad_token
else:
result = torch.ones((len(seq), max_len)).long() * pad_token
# if len(seq[0].size()) == 1:
# result = torch.ones((len(seq), max_len)).long() * pad_token
# else:
# result = torch.ones((len(seq), max_len, seq[0].size(-1))).float()
for i in range(len(seq)):
result[i, :seq[i].size(0)] = seq[i][-min(limit, seq[i].size(0)):]
return result
def batch_sample(encoder_input_ids, encoder_input_mask, dec_ids, tokenizer, model, args, scene=None, session=None, video=None):
# add encoder_outputs to model keyword arguments
model_kwargs = {
"encoder_outputs": model.get_encoder()(
encoder_input_ids,
video_ids=video,
attention_mask=encoder_input_mask,
session=session,
scene=scene,
return_dict=True
),
"attention_mask": encoder_input_mask
# "decoder"
}
# instantiate logits processors
logits_processor = LogitsProcessorList(
[
MinLengthLogitsProcessor(1, eos_token_id=model.config.eos_token_id),
]
)
logit_warper = LogitsProcessorList(
[
TopKLogitsWarper(50),
TemperatureLogitsWarper(0.7)
]
)
outputs = model.sample(dec_ids, logits_processor=logits_processor, logit_warper=logit_warper, pad_token_id=args.pad, max_length=args.max_length, **model_kwargs)
# hyp = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return outputs
def batch_greedy_search(encoder_input_ids, encoder_input_mask, dec_ids, tokenizer, model, args, scene=None, session=None, video=None):
# add encoder_outputs to model keyword arguments
model_kwargs = {
"encoder_outputs": model.get_encoder()(
encoder_input_ids,
video_ids=video,
attention_mask=encoder_input_mask,
session=session,
scene=scene,
return_dict=True
),
"attention_mask": encoder_input_mask
# "decoder"
}
# instantiate logits processors
logits_processor = LogitsProcessorList(
[
MinLengthLogitsProcessor(args.min_length, eos_token_id=model.config.eos_token_id),
]
)
outputs = model.greedy_search(dec_ids, logits_processor=logits_processor, pad_token_id=args.pad, max_length=args.max_length, **model_kwargs)
# hyp = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return outputs
def batch_beam_search(encoder_input_ids, encoder_input_mask, dec_ids, tokenizer, model, args, scene=None, session=None, video=None):
# add encoder_outputs to model keyword arguments
if video is not None:
if type(video) is list:
video_ids = []
for v in video:
video_ids += [v] * args.beam_size
# video_ids = [v.repeat_interleave(args.beam_size, dim=0) for v in video]
else:
video_ids = video.repeat_interleave(args.beam_size, dim=0)
else:
video_ids = None
if scene is not None:
scene_ids = scene.repeat_interleave(args.beam_size, dim=0)
else:
scene_ids = None
if session is not None:
session_ids = session.repeat_interleave(args.beam_size, dim=0)
else:
session_ids = None
model_kwargs = {
"encoder_outputs": model.get_encoder()(
encoder_input_ids.repeat_interleave(args.beam_size, dim=0),
video_ids=video_ids,
attention_mask=encoder_input_mask.repeat_interleave(args.beam_size, dim=0),
scene=scene_ids,
session=session_ids,
return_dict=True
),
"attention_mask": encoder_input_mask.repeat_interleave(args.beam_size, dim=0)
# "decoder"
}
# instantiate beam scorer
beam_scorer = BeamSearchScorer(
batch_size=encoder_input_ids.size(0),
max_length=args.max_length,
length_penalty=args.penalty,
num_beams=args.beam_size,
# do_early_stopping=True,
device=model.device,
)
# instantiate logits processors
logits_processor = LogitsProcessorList(
[
MinLengthLogitsProcessor(args.min_length, eos_token_id=model.config.eos_token_id),
# NoRepeatNGramLogitsProcessor(2)
]
)
outputs = model.beam_search(dec_ids.repeat_interleave(args.beam_size, dim=0), beam_scorer, logits_processor=logits_processor, pad_token_id=args.pad, max_length=args.max_length, **model_kwargs)
# hyp = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return outputs
# main
if __name__ =="__main__":
parser = ArgumentParser()
parser.add_argument("--model", type=str, default="bart", help="Pretrained Model type")
parser.add_argument("--max_history", type=int, default=0, help="Number of previous utterances to keep in history")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device (cuda or cpu)")
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--beam_size", type=int, default=5, help="Beam size")
parser.add_argument("--max_length", type=int, default=18, help="Maximum length of the output utterances")
parser.add_argument("--min_length", type=int, default=6, help="Minimum length of the output utterances")
parser.add_argument("--penalty", type=float, default=1.0, help="elngth penalty")
parser.add_argument("--seed", type=int, default=42, help="Seed")
parser.add_argument("--test_set", type=str, default="inputs/full/test.json")
parser.add_argument("--output", type=str, default="result.json")
parser.add_argument("--ckptid", type=str, help='ckpt selected for test')
parser.add_argument("--gpuid", type=str, default='0', help='gpu id')
parser.add_argument("--log", type=bool, default=False, help='if logging info')
parser.add_argument('--exp_set', type=str, default='test')
parser.add_argument('--video', type=int, default=0)
parser.add_argument('--sess', type=int, default=0)
parser.add_argument('--eval', type=int, default=1)
parser.add_argument('--gen_type', type=str, default='beam_search', choices=['sample', 'greedy_search', 'beam_search'])
args = parser.parse_args()
set_seed()
st = time.time()
exp_set = args.exp_set
model_checkpoint = 'ckpts/' + args.model + args.exp_set + '/'
output_dir = 'results/' + args.model + exp_set
if not os.path.exists(output_dir):
os.makedirs(output_dir)
args.output = output_dir + '/result_' + args.gen_type + '_' + args.ckptid + '_' + str(args.beam_size) + '_' + str(args.min_length) + '_' + str(args.penalty) + '.json'
# args.output = output_dir + '/result_{}.json'.format(args.gen_type)
if args.device == 'cuda':
args.device = 'cuda:' + args.gpuid
# setproctitle.setproctitle("task_{}_ckpt_{}_beam_{}_min_{}_pen_{:.1f}".format(args.task, args.ckptid, args.beam_size, args.min_length, args.penalty))
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpuid
for arg in vars(args):
print("{}={}".format(arg, getattr(args, arg)))
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)s: %(message)s')
logging.info('Loading model params from ' + model_checkpoint)
if 'bart' in args.model:
tokenizer_class = BartTokenizer
model_class = VSTARBARTGenerationModel
model_config = BartConfig.from_pretrained(model_checkpoint)
else:
print('No pre-trained model: {}!'.format(args.model))
raise ValueError
tokenizer = tokenizer_class.from_pretrained(model_checkpoint)
tokenizer.add_special_tokens(SPECIAL_TOKENS_DICT)
model = model_class.from_pretrained(model_checkpoint+"checkpoint_mymodel_" + args.ckptid + ".pt", config=model_config)
model.to(args.device)
model.eval()
args.pad = model.config.pad_token_id
with open('inputs/full/test_ref.json') as jh:
test_ref = json.load(jh)
if args.log:
logging.info('Loading test data from ' + args.test_set)
test_data = json.load(open(args.test_set,'r'))
if args.max_history:
test_dataset_path = 'inputs/full/pkls/test_20_data.pkl'
else:
test_dataset_path = 'inputs/full/pkls/test_resnet_data.pkl'
if not os.path.exists(test_dataset_path):
test_dataset = get_dataset(tokenizer, args.test_set, test=True, n_history=args.max_history)
with open(test_dataset_path, 'wb') as f:
pkl.dump(test_dataset, f)
else:
with open(test_dataset_path, 'rb') as f:
test_dataset = pkl.load(f)
if args.video:
test_ds = DataSet(test_dataset[0], tokenizer, test_dataset[1], train=False, model=args.model)
test_loader = DataLoader(test_ds, batch_size=args.batch_size, num_workers=4, shuffle=False, collate_fn=lambda x: collate_fn(x, tokenizer.pad_token_id, features=True))
else:
test_ds = DataSet(test_dataset[0], tokenizer, None, train=False, model=args.model)
test_loader = DataLoader(test_ds, batch_size=args.batch_size, num_workers=4, shuffle=False, collate_fn=lambda x: collate_fn(x, tokenizer.pad_token_id, features=None))
model.eval()
with torch.no_grad():
result_dialogs = []
for batch in tqdm(test_loader, desc='generate'):
encoder_input_ids, encoder_token_type_ids, encoder_input_mask, decoder_input_ids, decoder_token_type_ids, decoder_input_mask, labels, i3d, type_labels, \
vid_list, scene, session, seg_label = batch
encoder_input_ids = encoder_input_ids.to(args.device)
encoder_token_type_ids = encoder_token_type_ids.to(args.device)
encoder_input_mask = encoder_input_mask.to(args.device)
decoder_input_ids = decoder_input_ids.to(args.device)
decoder_token_type_ids = decoder_token_type_ids.to(args.device)
decoder_input_mask = decoder_input_mask.to(args.device)
labels = labels.to(args.device)
if args.video:
i3d = i3d.to(args.device)
scene = scene.to(args.device)
type_labels = type_labels.to(args.device)
session = session.to(args.device)
bsz = encoder_input_ids.size(0)
decoder_input_ids = torch.tensor(tokenizer.convert_tokens_to_ids(['</s>', '<sep>'])).expand(bsz, 2).to(args.device)
if args.gen_type == 'sample':
hyp_lst = batch_sample(encoder_input_ids, encoder_input_mask, decoder_input_ids, tokenizer, model, args, scene=None, session=None, video=i3d)
elif args.gen_type == 'greedy_search':
hyp_lst = batch_greedy_search(encoder_input_ids, encoder_input_mask, decoder_input_ids, tokenizer, model, args, scene=None, session=None, video=i3d)
elif args.gen_type == 'beam_search':
if args.sess:
hyp_lst = batch_beam_search(encoder_input_ids, encoder_input_mask, decoder_input_ids, tokenizer, model, args, scene=scene, session=session, video=i3d)
else:
hyp_lst = batch_beam_search(encoder_input_ids, encoder_input_mask, decoder_input_ids, tokenizer, model, args, scene=None, session=None, video=i3d)
hyp_lst = tokenizer.batch_decode(hyp_lst, skip_special_tokens=True)
for i, vid in enumerate(vid_list):
gen_dia = test_ref[vid]
gen_dia.append(hyp_lst[i])
# rouge = rouge_n(test_ref[vid][-1], hyp_lst[i])
result_dialogs.append({'clip_id':vid, 'dialog':gen_dia})
result = {'dialogs': result_dialogs}
if args.output:
if args.log:
logging.info('writing results to ' + args.output)
json.dump(result, open(args.output, 'w'), indent=4)
if args.eval:
evaluate(result, args.output)
if args.log:
logging.info('done')
print('generate take {} mins'.format((time.time()-st)//60))