-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGutzwillerSolver.cpp
228 lines (191 loc) · 6.35 KB
/
GutzwillerSolver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
//
// Created by patryk on 19/04/16.
//
#include "GutzwillerSolver.h"
GutzwillerSolver::GutzwillerSolver() : rho_solver(model), lambda_solver(model), combined_solver(model, rho_solver, lambda_solver) {
}
void GutzwillerSolver::set_phase(string phase, bool hartree_fock) {
lambda_solver.set_mode(phase);
rho_solver.set_mode(phase, hartree_fock);
combined_solver.set_mode(phase);
}
void GutzwillerSolver::set_solver_params(double ga_error, double ga_x, double rho_error, double rho_x, double lambda_error, double com_error) {
error = ga_error;
x = ga_x;
rho_solver.set_error(rho_error);
rho_solver.set_mixing_parameter(rho_x);
lambda_solver.set_error(lambda_error);
combined_solver.set_error(com_error);
}
void GutzwillerSolver::set_model_param(double param_value, string param_name) {
model.update_param(param_name, param_value);
}
void GutzwillerSolver::set_dos(vec energies, vec weights) {
model.update_dos(energies, weights);
}
void GutzwillerSolver::set_rho(vec rho) {
model.update_rho(rho);
}
void GutzwillerSolver::set_lambda(vec lambda) {
model.update_lambda(lambda);
}
void GutzwillerSolver::set_eta(vec eta) {
model.update_eta(eta);
}
vec GutzwillerSolver::get_rho() {
return model.rho;
}
vec GutzwillerSolver::get_lambda() {
return model.lambda;
}
vec GutzwillerSolver::get_eta() {
return model.eta;
}
double GutzwillerSolver::get_model_param(string param_name) {
return model.get_param(param_name);
}
int GutzwillerSolver::solve(string mode) {
if(mode == "iterations"){
vec old_rho(n_rho);
double old_mu;
vec old_lambda(n_lambda);
vec old_eta(n_eta);
int status = 0;
bool converged = false;
for(size_t iter = 0; iter < iter_max; iter++){
cout << "GLOBAL ITERATION: " << iter << endl;
old_rho = model.rho;
old_mu = model.mu;
old_lambda = model.lambda;
old_eta = model.eta;
cout << "RHO solver:" << endl;
rho_solver.solve(model.rho, model.mu);
converged = are_equal_up_to_error(old_rho, model.rho) && abs(old_mu - model.mu) < error;
model.update_rho(get_mixed_vec(old_rho, model.rho));
model.mu = x * old_mu + (1 - x) * model.mu;
cout << "LAMBDA solver:" << endl;
status = lambda_solver.solve(model.lambda, model.eta);
converged = converged && are_equal_up_to_error(old_lambda, model.lambda) && are_equal_up_to_error(old_eta, model.eta);
model.update_lambda(get_mixed_vec(old_lambda, model.lambda));
model.update_eta(get_mixed_vec(old_eta, model.eta));
if(abs(model.mu) > 100){
status = 100;
break;
}
for(auto eta_el : model.eta){
if(abs(eta_el) > 100){
status = 100;
break;
}
}
if(converged){
cout << "SUCCESS!" << endl;
return 0;
}
cout << endl;
}
cout << "SORRY. NO CONVERGENCE!" << endl;
return status;
}
else if(mode == "rho"){
return rho_solver.solve(model.rho, model.mu);
}
else if(mode == "rho_iterations"){
return rho_solver.solve_by_iteration(model.rho);
}
else if(mode == "lambda"){
//lambda_solver.fix_n = false;
return lambda_solver.solve(model.lambda, model.eta);
}
else if(mode == "combined"){
return combined_solver.solve();
}
else if(mode == "full"){
int status = solve("iterations");
if(status != 0) return status;
else return solve("combined");
}
else cout << "Wrong mode name!" << endl;
}
double GutzwillerSolver::get_uncorrelated_observable(string param_name){
return rho_solver.get_local_density_matrix_element(param_name);
}
double GutzwillerSolver::get_correlated_observable(string param_name) {
return model.local_density_matrix_element(param_name);
}
double GutzwillerSolver::get_energy(string part){
if(part == "full"){
return model.local_energy() + rho_solver.c_energy();
}
if(part == "f"){
return model.local_f_energy();
}
if(part == "c"){
return rho_solver.c_energy();
}
if(part == "fc"){
return model.local_hyb_energy();
}
else cout << "Wrong name!";
}
bool GutzwillerSolver::are_equal_up_to_error(const vec &vec1, const vec &vec2) {
assert(vec1.size() == vec2.size());
for(size_t i = 0; i < vec1.size(); i++){
if(abs(vec1[i] - vec2[i]) > error){
return false;
}
}
return true;
}
vec GutzwillerSolver::lambda_hessian_minors() {
return lambda_solver.hessian_minors();
}
vec GutzwillerSolver::get_mixed_vec(const vec &old_vec, const vec &new_vec) {
assert(old_vec.size() == new_vec.size());
vec result;
result.reserve(old_vec.size());
for(size_t i = 0; i < old_vec.size(); i++){
result.push_back((1 - x) * new_vec[i] + x * old_vec[i]);
}
return result;
}
void GutzwillerSolver::rho_calculate() {
rho_solver.calculate_density_matrix(model.rho);
}
void GutzwillerSolver::calculate_dos(double E_min, double E_max, double step, double sigma) {
rho_solver.calculate_dos(E_min, E_max, step, sigma);
}
vec GutzwillerSolver::get_dos_energies() {
return arma::conv_to<vec>::from(rho_solver.dos_energies);
}
vec GutzwillerSolver::get_dos(string spin, string band) {
if(band == "total"){
if(spin == "up")
return arma::conv_to<vec>::from(rho_solver.dos_up);
if(spin == "do")
return arma::conv_to<vec>::from(rho_solver.dos_do);
}
if(band == "f"){
if(spin == "up")
return arma::conv_to<vec>::from(rho_solver.dos_f_up);
if(spin == "do")
return arma::conv_to<vec>::from(rho_solver.dos_f_do);
}
if(band == "c"){
if(spin == "up")
return arma::conv_to<vec>::from(rho_solver.dos_c_up);
if(spin == "do")
return arma::conv_to<vec>::from(rho_solver.dos_c_do);
}
}
double GutzwillerSolver::get_renormalization_factor(string spin) {
double z = 0;
if(spin == "up")
z = model.V_up_eff() / model.V;
if(spin == "do")
z = model.V_do_eff() / model.V;
return z * z;
}
vec GutzwillerSolver::get_constraints() {
return model.all_constraints();
}