-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_halnet_prior.py
203 lines (191 loc) · 11.2 KB
/
train_halnet_prior.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
from torch.autograd import Variable
import synthhands_handler
import trainer
import time
from magic import display_est_time_loop
import losses as my_losses
from debugger import print_verbose
from HALNet_prior import HALNet_prior
import numpy as np
def train(train_loader, model, optimizer, train_vars, control_vars, verbose=True):
curr_epoch_iter = 1
for batch_idx, (data, target) in enumerate(train_loader):
control_vars['batch_idx'] = batch_idx
if batch_idx < control_vars['iter_size']:
print_verbose("\rPerforming first iteration; current mini-batch: " +
str(batch_idx+1) + "/" + str(control_vars['iter_size']), verbose, n_tabs=0, erase_line=True)
# check if arrived at iter to start
if control_vars['curr_epoch_iter'] < control_vars['start_iter_mod']:
if batch_idx % control_vars['iter_size'] == 0:
print_verbose("\rGoing through iterations to arrive at last one saved... " +
str(int(control_vars['curr_epoch_iter']*100.0/control_vars['start_iter_mod'])) + "% of " +
str(control_vars['start_iter_mod']) + " iterations (" +
str(control_vars['curr_epoch_iter']) + "/" + str(control_vars['start_iter_mod']) + ")",
verbose, n_tabs=0, erase_line=True)
control_vars['curr_epoch_iter'] += 1
control_vars['curr_iter'] += 1
curr_epoch_iter += 1
continue
# save checkpoint after final iteration
if control_vars['curr_iter'] == control_vars['num_iter']:
print_verbose("\nReached final number of iterations: " + str(control_vars['num_iter']), verbose)
print_verbose("\tSaving final model checkpoint...", verbose)
final_model_dict = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'control_vars': control_vars,
'train_vars': train_vars,
}
trainer.save_checkpoint(final_model_dict,
filename=train_vars['checkpoint_filenamebase'] +
'final' + str(control_vars['num_iter']) + '.pth.tar')
control_vars['done_training'] = True
break
# start time counter
start = time.time()
# get data and targetas cuda variables
target_heatmaps, target_joints, _, target_prior = target
data, target_heatmaps, target_prior = Variable(data), Variable(target_heatmaps), Variable(target_prior)
if train_vars['use_cuda']:
data = data.cuda()
target_heatmaps = target_heatmaps.cuda()
target_prior = target_prior.cuda()
# visualize if debugging
# get model output
output = model(data)
# accumulate loss for sub-mini-batch
if train_vars['cross_entropy']:
loss_func = my_losses.cross_entropy_loss_p_logq
else:
loss_func = my_losses.euclidean_loss
loss, loss_prior = my_losses.calculate_loss_HALNet_prior(loss_func,
output, target_heatmaps, target_prior, model.joint_ixs, model.WEIGHT_LOSS_INTERMED1,
model.WEIGHT_LOSS_INTERMED2, model.WEIGHT_LOSS_INTERMED3,
model.WEIGHT_LOSS_MAIN, control_vars['iter_size'])
loss.backward()
train_vars['total_loss'] += loss
train_vars['total_loss_prior'] += loss_prior
# accumulate pixel dist loss for sub-mini-batch
train_vars['total_pixel_loss'] = my_losses.accumulate_pixel_dist_loss_multiple(
train_vars['total_pixel_loss'], output[3], target_heatmaps, control_vars['batch_size'])
if train_vars['cross_entropy']:
train_vars['total_pixel_loss_sample'] = my_losses.accumulate_pixel_dist_loss_from_sample_multiple(
train_vars['total_pixel_loss_sample'], output[3], target_heatmaps, control_vars['batch_size'])
else:
train_vars['total_pixel_loss_sample'] = [-1] * len(model.joint_ixs)
# get boolean variable stating whether a mini-batch has been completed
minibatch_completed = (batch_idx+1) % control_vars['iter_size'] == 0
if minibatch_completed:
# optimise for mini-batch
optimizer.step()
# clear optimiser
optimizer.zero_grad()
# append total loss
train_vars['losses'].append(train_vars['total_loss'].data[0])
# erase total loss
total_loss = train_vars['total_loss'].data[0]
train_vars['total_loss'] = 0
# append total loss prior
train_vars['losses_prior'].append(train_vars['total_loss_prior'].data[0])
# erase total loss
total_loss_prior = train_vars['total_loss_prior'].data[0]
train_vars['total_loss_prior'] = 0
# append dist loss
train_vars['pixel_losses'].append(train_vars['total_pixel_loss'])
# erase pixel dist loss
train_vars['total_pixel_loss'] = [0] * len(model.joint_ixs)
# append dist loss of sample from output
train_vars['pixel_losses_sample'].append(train_vars['total_pixel_loss_sample'])
# erase dist loss of sample from output
train_vars['total_pixel_loss_sample'] = [0] * len(model.joint_ixs)
# check if loss is better
if train_vars['losses'][-1] < train_vars['best_loss']:
train_vars['best_loss'] = train_vars['losses'][-1]
print_verbose(" This is a best loss found so far: " + str(train_vars['losses'][-1]), verbose)
train_vars['best_model_dict'] = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'control_vars': control_vars,
'train_vars': train_vars,
}
if train_vars['losses_prior'][-1] < train_vars['best_loss_prior']:
train_vars['best_loss_prior'] = train_vars['losses_prior'][-1]
# log checkpoint
if control_vars['curr_iter'] % control_vars['log_interval'] == 0:
trainer.print_log_info(model, optimizer, epoch, total_loss, train_vars, control_vars)
msg = ''
msg += print_verbose(
"-------------------------------------------------------------------------------------------",
verbose) + "\n"
msg += print_verbose("Current loss (prior): " + str(total_loss_prior), verbose) + "\n"
msg += print_verbose("Best loss (prior): " + str(train_vars['best_loss_prior']), verbose) + "\n"
msg += print_verbose("Mean total loss (prior): " + str(np.mean(train_vars['losses_prior'])), verbose) + "\n"
msg += print_verbose("Mean loss (prior) for last " + str(control_vars['log_interval']) +
" iterations (average total loss): " + str(
np.mean(train_vars['losses_prior'][-control_vars['log_interval']:])), verbose) + "\n"
msg += print_verbose(
"-------------------------------------------------------------------------------------------",
verbose) + "\n"
if not control_vars['output_filepath'] == '':
with open(control_vars['output_filepath'], 'a') as f:
f.write(msg + '\n')
if control_vars['curr_iter'] % control_vars['log_interval_valid'] == 0:
print_verbose("\nSaving model and checkpoint model for validation", verbose)
checkpoint_model_dict = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'control_vars': control_vars,
'train_vars': train_vars,
}
trainer.save_checkpoint(checkpoint_model_dict,
filename=train_vars['checkpoint_filenamebase'] + 'for_valid_' +
str(control_vars['curr_iter']) + '.pth.tar')
# print time lapse
prefix = 'Training (Epoch #' + str(epoch) + ' ' + str(control_vars['curr_epoch_iter']) + '/' +\
str(control_vars['tot_iter']) + ')' + ', (Batch ' + str(control_vars['batch_idx']+1) +\
'(' + str(control_vars['iter_size']) + ')' + '/' +\
str(control_vars['num_batches']) + ')' + ', (Iter #' + str(control_vars['curr_iter']) +\
'(' + str(control_vars['batch_size']) + ')' +\
' - log every ' + str(control_vars['log_interval']) + ' iter): '
control_vars['tot_toc'] = display_est_time_loop(control_vars['tot_toc'] + time.time() - start,
control_vars['curr_iter'], control_vars['num_iter'],
prefix=prefix)
control_vars['curr_iter'] += 1
control_vars['start_iter'] = control_vars['curr_iter'] + 1
control_vars['curr_epoch_iter'] += 1
return train_vars, control_vars
model, optimizer, control_vars, train_vars = trainer.get_vars(model_class=HALNet_prior)
if train_vars['use_cuda']:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
train_loader = synthhands_handler.get_SynthHands_trainloader(root_folder=train_vars['root_folder'],
joint_ixs=model.joint_ixs,
heatmap_res=(320, 240),
batch_size=control_vars['max_mem_batch'],
verbose=control_vars['verbose'],
dataset_type='prior')
control_vars['num_batches'] = len(train_loader)
control_vars['n_iter_per_epoch'] = int(len(train_loader) / control_vars['iter_size'])
control_vars['tot_iter'] = int(len(train_loader) / control_vars['iter_size'])
control_vars['start_iter_mod'] = control_vars['start_iter'] % control_vars['tot_iter']
trainer.print_header_info(model, train_loader, control_vars)
model.train()
control_vars['curr_iter'] = 1
train_vars['best_loss_prior'] = 1e10
train_vars['losses_prior'] = []
train_vars['total_loss_prior'] = 0
for epoch in range(control_vars['num_epochs']):
control_vars['curr_epoch_iter'] = 1
if epoch + 1 < control_vars['start_epoch']:
print_verbose("Advancing through epochs: " + str(epoch + 1), control_vars['verbose'], erase_line=True)
control_vars['curr_iter'] += control_vars['n_iter_per_epoch']
continue
train_vars['total_loss'] = 0
train_vars['total_pixel_loss'] = [0] * len(model.joint_ixs)
train_vars['total_pixel_loss_sample'] = [0] * len(model.joint_ixs)
optimizer.zero_grad()
# train model
train_vars, control_vars = train(train_loader, model, optimizer, train_vars, control_vars, control_vars['verbose'])
if control_vars['done_training']:
print_verbose("Done training.", control_vars['verbose'])
break