-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvalidate_halnet_egodexter.py
149 lines (134 loc) · 7.94 KB
/
validate_halnet_egodexter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
from torch.autograd import Variable
import egodexter_handler, synthhands_handler
import trainer
import validator
import time
from magic import display_est_time_loop
import losses as my_losses
from debugger import print_verbose
from HALNet import HALNet
import visualize
import converter as conv
DEBUG_VISUALLY = False
def validate(valid_loader, model, optimizer, valid_vars, control_vars, verbose=True):
curr_epoch_iter = 1
for batch_idx, (data, target) in enumerate(valid_loader):
control_vars['batch_idx'] = batch_idx
if batch_idx < control_vars['iter_size']:
print_verbose("\rPerforming first iteration; current mini-batch: " +
str(batch_idx + 1) + "/" + str(control_vars['iter_size']), verbose, n_tabs=0, erase_line=True)
# start time counter
start = time.time()
# get data and targetas cuda variables
target_2D, target_heatmaps = target
data, target_heatmaps = Variable(data), Variable(target_heatmaps)
if valid_vars['use_cuda']:
data = data.cuda()
target_heatmaps = target_heatmaps.cuda()
# visualize if debugging
# get model output
output = model(data)
# accumulate loss for sub-mini-batch
if valid_vars['cross_entropy']:
loss_func = my_losses.cross_entropy_loss_p_logq
else:
loss_func = my_losses.euclidean_loss
loss = my_losses.calculate_loss_HALNet(loss_func,
output, target_heatmaps, model.joint_ixs, model.WEIGHT_LOSS_INTERMED1,
model.WEIGHT_LOSS_INTERMED2, model.WEIGHT_LOSS_INTERMED3,
model.WEIGHT_LOSS_MAIN, control_vars['iter_size'])
if DEBUG_VISUALLY:
for i in range(control_vars['max_mem_batch']):
filenamebase_idx = (batch_idx * control_vars['max_mem_batch']) + i
filenamebase = valid_loader.dataset.get_filenamebase(filenamebase_idx)
#fig = visualize.create_fig()
#visualize.plot_joints_from_heatmaps(output[3][i].data.numpy(), fig=fig,
# title=filenamebase, data=data[i].data.numpy())
visualize.plot_image_and_heatmap(output[3][i][8].data.numpy(),
data=data[i].data.numpy(),
title=filenamebase + ' (index tip)')
#visualize.savefig('/home/paulo/' + filenamebase.replace('/', '_') + '_heatmap')
#labels_colorspace = conv.heatmaps_to_joints_colorspace(output[3][i].data.numpy())
#data_crop, crop_coords, labels_heatmaps, labels_colorspace = \
# synthhands_handler.crop_image_get_labels(data[i].data.numpy(), labels_colorspace, range(21))
#visualize.plot_image(data_crop, title=filenamebase, fig=fig)
#visualize.plot_joints_from_colorspace(labels_colorspace, title=filenamebase, fig=fig, data=data_crop)
#visualize.savefig('/home/paulo/' + filenamebase.replace('/', '_') + '_crop')
visualize.show()
#loss.backward()
valid_vars['total_loss'] += loss
# accumulate pixel dist loss for sub-mini-batch
valid_vars['total_pixel_loss'] = my_losses.accumulate_pixel_dist_loss_multiple(
valid_vars['total_pixel_loss'], output[3], target_heatmaps, control_vars['batch_size'])
if valid_vars['cross_entropy']:
valid_vars['total_pixel_loss_sample'] = my_losses.accumulate_pixel_dist_loss_from_sample_multiple(
valid_vars['total_pixel_loss_sample'], output[3], target_heatmaps, control_vars['batch_size'])
else:
valid_vars['total_pixel_loss_sample'] = [-1] * len(model.joint_ixs)
# get boolean variable stating whether a mini-batch has been completed
minibatch_completed = (batch_idx+1) % control_vars['iter_size'] == 0
if minibatch_completed:
# append total loss
valid_vars['losses'].append(valid_vars['total_loss'].data[0])
# erase total loss
total_loss = valid_vars['total_loss'].data[0]
valid_vars['total_loss'] = 0
# append dist loss
valid_vars['pixel_losses'].append(valid_vars['total_pixel_loss'])
# erase pixel dist loss
valid_vars['total_pixel_loss'] = [0] * len(model.joint_ixs)
# append dist loss of sample from output
valid_vars['pixel_losses_sample'].append(valid_vars['total_pixel_loss_sample'])
# erase dist loss of sample from output
valid_vars['total_pixel_loss_sample'] = [0] * len(model.joint_ixs)
# check if loss is better
if valid_vars['losses'][-1] < valid_vars['best_loss']:
valid_vars['best_loss'] = valid_vars['losses'][-1]
print_verbose(" This is a best loss found so far: " + str(valid_vars['losses'][-1]), verbose)
# log checkpoint
if control_vars['curr_iter'] % control_vars['log_interval'] == 0:
trainer.print_log_info(model, optimizer, 1, total_loss, valid_vars, control_vars)
model_dict = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'control_vars': control_vars,
'train_vars': valid_vars,
}
trainer.save_checkpoint(model_dict,
filename=valid_vars['checkpoint_filenamebase'] +
str(control_vars['num_iter']) + '.pth.tar')
# print time lapse
prefix = 'Validating (Epoch #' + str(1) + ' ' + str(control_vars['curr_epoch_iter']) + '/' +\
str(control_vars['tot_iter']) + ')' + ', (Batch ' + str(control_vars['batch_idx']+1) +\
'(' + str(control_vars['iter_size']) + ')' + '/' +\
str(control_vars['num_batches']) + ')' + ', (Iter #' + str(control_vars['curr_iter']) +\
'(' + str(control_vars['batch_size']) + ')' +\
' - log every ' + str(control_vars['log_interval']) + ' iter): '
control_vars['tot_toc'] = display_est_time_loop(control_vars['tot_toc'] + time.time() - start,
control_vars['curr_iter'], control_vars['num_iter'],
prefix=prefix)
control_vars['curr_iter'] += 1
control_vars['start_iter'] = control_vars['curr_iter'] + 1
control_vars['curr_epoch_iter'] += 1
return valid_vars, control_vars
model, optimizer, control_vars, valid_vars, train_control_vars = validator.parse_args(model_class=HALNet)
if valid_vars['use_cuda']:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
valid_loader = egodexter_handler.get_loader(type='valid',
root_folder=valid_vars['root_folder'],
img_res=(320, 240),
batch_size=control_vars['max_mem_batch'],
verbose=control_vars['verbose'])
control_vars['num_batches'] = len(valid_loader)
control_vars['n_iter_per_epoch'] = int(len(valid_loader) / control_vars['iter_size'])
control_vars['num_iter'] = len(valid_loader)
control_vars['tot_iter'] = int(len(valid_loader) / control_vars['iter_size'])
control_vars['start_iter_mod'] = control_vars['start_iter'] % control_vars['tot_iter']
trainer.print_header_info(model, valid_loader, control_vars)
control_vars['curr_iter'] = 1
control_vars['curr_epoch_iter'] = 1
valid_vars['total_loss'] = 0
valid_vars['total_pixel_loss'] = [0] * len(model.joint_ixs)
valid_vars['total_pixel_loss_sample'] = [0] * len(model.joint_ixs)
valid_vars, control_vars = validate(valid_loader, model, optimizer, valid_vars, control_vars, control_vars['verbose'])