-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPaulUhn.ProjectMovieLens.Rmd
1112 lines (899 loc) · 38.4 KB
/
PaulUhn.ProjectMovieLens.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Project MovieLens"
author: "Paul Uhn"
date: "`r Sys.Date()`"
output: pdf_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
library(caret)
library(kableExtra)
library(rafalib)
library(gridExtra)
library(scales)
options(timeout = 120)
```
## Introduction
This document describes my project for building the algorithm for a movie recommendation system. A recommendation system can be useful because it can take a user's ratings for some items and make recommendations by predicting other items the user would likely give high ratings for.
Netflix uses a recommendation system to predict if a user will like a specific movie or tv show. Previously, the ratings were based on the number of stars (1-5) but currently it uses a simpler system of thumbs up, two thumbs up and thumbs down for user ratings.
In 2006, Netflix held an open competition for improving their recommendation algorithm and awarded the grand prize in September 2009. Due to privacy concerns, those datasets are no longer available. So for this project, I used the MovieLens 10M dataset provided by the GroupLens research lab. This dataset provides 10 million ratings - 10,000 movies rated by 72,000 users.
The final algorithm was developed in several steps starting with the most trivial one: the mean over all user-movie ratings. I selected and analyzed additional effects before including them as part of the algorithm's predictors. As part of this analysis, I kept a running table of the root mean squared error (RMSE) values. The best way to think of RMSE values is golf scores - the lower the better.
- Netflix Prize: <https://en.wikipedia.org/wiki/Netflix_Prize>
- Summary of the winning algorithm: <http://blog.echen.me/2011/10/24/winning-the-netflix-prize-a-summary/>
- Explanation of the winning algorithm: <https://www2.seas.gwu.edu/~simhaweb/champalg/cf/papers/KorenBellKor2009.pdf>
- MovieLens datasets: <https://grouplens.org/datasets/movielens/>
\newpage
## Data Wrangling
First, the datasets need to be downloaded and converted into a usable format for analysis. This process is called `data wrangling`.
```{r datasets-download, cache=TRUE}
dl <- "ml-10M100K.zip"
if(!file.exists(dl))
download.file("https://files.grouplens.org/datasets/movielens/ml-10m.zip", dl)
ratings_file <- "ml-10M100K/ratings.dat"
if(!file.exists(ratings_file))
unzip(dl, ratings_file)
movies_file <- "ml-10M100K/movies.dat"
if(!file.exists(movies_file))
unzip(dl, movies_file)
ratings <- as.data.frame(str_split(read_lines(ratings_file), fixed("::"), simplify = TRUE),
stringsAsFactors = FALSE)
colnames(ratings) <- c("userId", "movieId", "rating", "timestamp")
ratings <- ratings |>
mutate(userId = as.integer(userId),
movieId = as.integer(movieId),
rating = as.numeric(rating),
timestamp = as.integer(timestamp),
date = as_datetime(timestamp)) |>
select(userId, movieId, rating, date)
movies <- as.data.frame(str_split(read_lines(movies_file), fixed("::"), simplify = TRUE),
stringsAsFactors = FALSE)
colnames(movies) <- c("movieId", "title", "genres")
movies <- movies |>
separate_wider_regex(title, c(title = ".*", " \\(", year = "\\d{4}", "\\)")) |>
mutate(movieId = as.integer(movieId),
year = as.integer(year))
movielens <- left_join(ratings, movies, by = "movieId")
```
Second, the datasets need to be split into training and test sets. The final hold-out test set will be 10% of the data and will **ONLY** be used to evaluate the RMSE of the final algorithm.
```{r datasets-split, warning=FALSE, cache=TRUE}
set.seed(1, sample.kind="Rounding")
test_index <- createDataPartition(y = movielens$rating, times = 1, p = 0.1, list = FALSE)
edx <- movielens[-test_index,]
temp <- movielens[test_index,]
# Make sure userId and movieId in final hold-out test set are also in edx set
final_holdout_test <- temp |>
semi_join(edx, by = "movieId") |>
semi_join(edx, by = "userId")
# Add rows removed from final hold-out test set back into edx set
removed <- anti_join(temp, final_holdout_test,
by = join_by(userId, movieId, rating, date, title, genres))
edx <- rbind(edx, removed)
```
```{r cleanup, include=FALSE}
rm(dl, ratings, movies, test_index, temp, movielens, removed)
```
Here's the final training set `edx` with 9 million rows:
```{r head, cache=TRUE}
edx |> as_tibble()
```
We can also see the number of unique users and unique movies:
```{r unique, cache=TRUE}
edx |> summarize(n_users = n_distinct(userId),
n_movies = n_distinct(movieId))
```
But multiplying these two numbers results in almost 750 million ratings! Given that we actually have only 9 million ratings, we can guess that not every user rated every movie. Here's a subset that proves our hunch:
```{r subset, echo=FALSE, cache=TRUE}
keep <- edx |>
dplyr::count(movieId) |>
slice_max(n, n = 4) |>
pull(movieId)
tab <- edx |>
filter(movieId %in% keep) |>
filter(userId %in% c(18:34)) |>
select(userId, title, rating) |>
mutate(title = str_remove(title, ", The")) |>
pivot_wider(names_from = "title", values_from = "rating")
if(knitr::is_html_output()) {
knitr::kable(tab, "html") |>
kableExtra::kable_styling(bootstrap_options = "striped", full_width = FALSE)
} else {
knitr::kable(tab, "latex", booktabs = TRUE) |>
kableExtra::kable_styling(font_size = 8, full_width = TRUE) # setting width to fix pdf bug
}
```
Note the `NA` as missing user ratings. As well as the different movie ratings per user.
Just to see how _sparse_ the data really is, here's a random sample of 100 movies and 100 users with the color indicating a user rating.
```{r random-sample, echo=FALSE, fig.align='center', fig.width=3, fig.height=2.5, cache=TRUE}
set.seed(2023)
users <- sample(unique(edx$userId), 100)
rafalib::mypar()
edx |>
filter(userId %in% users) |>
select(userId, movieId, rating) |>
mutate(rating = 1) |>
pivot_wider(names_from = movieId, values_from = rating) |>
(\(mat) mat[, sample(ncol(mat), 100)])() |>
as.matrix() |>
t() |>
image(1:100, 1:100, z = _, xlab = "Movies", ylab = "Users")
```
\newpage
Here's another way to look at the data: some movies are blockbusters and watched by millions. And some users are just way more active than others.
```{r barplots, echo=FALSE, fig.width=6, fig.height=3, fig.align='center', cache=TRUE}
p1 <- edx |>
count(movieId) |>
ggplot(aes(n)) +
geom_histogram(bins = 25, color = "black") +
scale_x_log10() +
ggtitle("Movies")
p2 <- edx |>
count(userId) |>
ggplot(aes(n)) +
geom_histogram(bins = 25, color = "black") +
scale_x_log10() +
ggtitle("Users")
gridExtra::grid.arrange(p1, p2, ncol = 2)
```
## Analysis
To aid in our analysis, I split the `edx` into training and test sets by assigning 20% of the ratings by each user to the test set:
```{r training-test-sets, cache=TRUE}
set.seed(2023)
indexes <- split(1:nrow(edx), edx$userId)
test_ind <- sapply(indexes, function(ind) sample(ind, ceiling(length(ind)*.2))) |>
unlist(use.names = TRUE) |> sort()
test_set <- edx[test_ind,]
train_set <- edx[-test_ind,]
```
And we remove any movies that are **not** in both training and test sets:
```{r remove-entries, cache=TRUE}
test_set <- test_set |>
semi_join(train_set, by = "movieId")
train_set <- train_set |>
semi_join(test_set, by = "movieId")
```
Finally, we create a matrix of users (row) and movies (column):
```{r pivot-wider, cache=TRUE, cache.lazy=FALSE}
y <- train_set |>
select(movieId, userId, rating) |>
pivot_wider(names_from = movieId, values_from = rating)
rnames <- y$userId
y <- as.matrix(y[,-1])
rownames(y) <- rnames
```
As well as a table to map the movie ids to titles:
```{r movie-map, cache=TRUE}
movie_map <- train_set |>
select(movieId, title) |>
distinct(movieId, .keep_all = TRUE)
```
### RMSE
To evaluate how well the algorithm is performing, we will be using the RMSE on the test set. The RMSE is as defined:
$$
\mbox{RMSE} = \sqrt{\frac{1}{N} \sum_{u,i}^{} \left( \hat{y}_{u,i} - y_{u,i} \right)^2 }
$$
where $y_{u,i}$ is the rating for movie $i$ by user $u$, our prediction for the rating is $\hat{y}_{u,i}$ and $N$ is the number of user/movie combinations.
Another way to think of it is to get all the differences between our prediction and the actual user ratings and square them. Then get the square root of the mean. In R, we define the RMSE as a function:
```{r rmse-function}
RMSE <- function(true_ratings, predicted_ratings) {
sqrt(mean((true_ratings-predicted_ratings)^2))
}
```
### First Algorithm
The first algorithm should predict a constant value for the rating regardless of movie or user:
$$
Y_{u,i} = \mu + \varepsilon_{u,i}
$$
where $\varepsilon_{i,u}$ is the independent errors sampled from the same distribution centered at zero and $\mu$ is the _true_ rating for all movies.
In this case, $\mu$ becomes the average rating of all movies across all users.
```{r mu, cache=TRUE}
mu <- mean(y, na.rm = TRUE)
mu
```
Using $\mu$ to predict all unknown ratings gives the following RMSE:
```{r trivial-rmse}
trivial_rmse <- RMSE(test_set$rating, mu)
trivial_rmse
```
Here's our results so far:
```{r rmse-results-trivial, echo=FALSE}
rmse_results <- tibble(method = "Just the average", RMSE = trivial_rmse)
if(knitr::is_html_output()) {
knitr::kable(rmse_results, "html") |>
kableExtra::kable_styling(bootstrap_options = "striped", full_width = FALSE)
} else {
knitr::kable(rmse_results, "latex", booktabs = TRUE) |>
kableExtra::kable_styling(font_size = 8, full_width = TRUE) # setting width to fix pdf bug
}
```
\newpage
### Movie Effects
We know from past experience that some movies are rated higher than others. This bias, $b$, can therefore be added to our algorithm:
$$
Y_{u,i} = \mu + b_i + \varepsilon_{u,i}
$$
where $b_i$ is the movie bias effect for movie $i$.
We can then compute that $b_i$ is just the average of $y_{u,i} - \mu$ for each movie $i$:
```{r b_i, cache=TRUE}
b_i <- colMeans(y - mu, na.rm = TRUE)
```
And we can see that these estimates vary substantially:
```{r hist-b_i, fig.width=4, fig.height=3, fig.align='center'}
hist(b_i)
```
Note that $\mu = 3.5$ so $b_i = 1.5$ implies a perfect five star rating.
Let's see how our predictions improve using $b_i$:
```{r fit-movies}
fit_movies <- data.frame(movieId = as.integer(colnames(y)),
mu = mu,
b_i = b_i)
movie_effect_rmse <- left_join(test_set, fit_movies, by = "movieId") |>
mutate(pred = mu + b_i) |>
summarize(rmse = RMSE(rating, pred)) |>
pull(rmse)
movie_effect_rmse
```
And our results so far:
```{r rmse_results-movie, echo=FALSE}
rmse_results <- rmse_results |>
add_row(method = "Movie effect", RMSE = movie_effect_rmse)
if(knitr::is_html_output()) {
knitr::kable(rmse_results, "html") |>
kableExtra::kable_styling(bootstrap_options = "striped", full_width = FALSE)
} else {
knitr::kable(rmse_results, "latex", booktabs = TRUE) |>
kableExtra::kable_styling(font_size = 8, full_width = TRUE) # setting width to fix pdf bug
}
```
\newpage
### User Effects
Let's compute the average rating for user $u$ to check for any user bias:
```{r b_u-hist, fig.width=4, fig.height=3, fig.align='center'}
b_u <- rowMeans(y, na.rm = TRUE)
hist(b_u)
```
Note the substantial variability across users - there is definitely user bias here:
$$
Y_{u,i} = \mu + b_i + b_u + \varepsilon_{u,i}
$$
where $b_u$ is the user effect bias for user $u$.
We can compute $b_u$ as the average of $y_{u,i} - \mu - b_i$ for each user $u$:
```{r b_u, cache=TRUE}
b_u <- rowMeans(sweep(y - mu, 2, b_i), na.rm = TRUE)
```
We can then make our predictions:
```{r fit_users}
fit_users <- data.frame(userId = as.integer(rownames(y)),
b_u = b_u)
user_effect_rmse <- left_join(test_set, fit_movies, by = "movieId") |>
left_join(fit_users, by = "userId") |>
mutate(pred = mu + b_i + b_u) |>
summarize(rmse = RMSE(rating, pred)) |>
pull(rmse)
user_effect_rmse
```
And here's where we are so far:
```{r rmse_results-user, echo=FALSE}
rmse_results <- rmse_results |>
add_row(method = "Movie + User effect", RMSE = user_effect_rmse)
if(knitr::is_html_output()) {
knitr::kable(rmse_results, "html") |>
kableExtra::kable_styling(bootstrap_options = "striped", full_width = FALSE)
} else {
knitr::kable(rmse_results, "latex", booktabs = TRUE) |>
kableExtra::kable_styling(font_size = 8, full_width = TRUE) # setting width to fix pdf bug
}
```
\newpage
### Regularization
Based on our estimates of the movie effect $b_i$, let's take a look at the top movies scoring above 4$\frac{1}{2}$ stars:
```{r obscure-best-movies}
n <- colSums(!is.na(y))
fit_movies$n <- n
best <- fit_movies |> left_join(movie_map, by = "movieId") |>
mutate(average_rating = mu + b_i) |>
filter(average_rating > 4.5 & n > 1)
test_set |>
group_by(movieId) |>
summarize(test_set_averge_rating = mean(rating)) |>
right_join(best, by = "movieId") |>
select(title, average_rating, n, test_set_averge_rating)
```
These all seem like obscure movies. The reason being they were highly rated by very few users. To fix this, we need to penalize large estimates formed by small sample sizes and reduce the penalty as the sample size grows.
$$
b_i(\lambda) = \frac{1}{\lambda + n_i} \sum_{u=1}^{n_i} \left(y_{u,i} - \mu\right)
$$
where $\lambda$ is the penalty, and $n_i$ is the number of ratings made for movie $i$. So when sample size $n_i$ is very large, the penalty $\lambda$ is effectively ignored since $n_i+\lambda \approx n_i$. But when $n_i$ is small, it causes $b_i(\lambda)$ to shrink to 0.
```{r b_i_reg-rmses, cache=TRUE}
lambdas <- seq(0, 10, 0.1)
sums <- colSums(y - mu, na.rm = TRUE)
rmses <- sapply(lambdas, function(lambda) {
b_i <- sums / (n + lambda)
fit_movies$b_i <- b_i
left_join(test_set, fit_movies, by = "movieId") |>
mutate(pred = mu + b_i) |>
summarize(rmse = RMSE(rating, pred)) |>
pull(rmse)
})
```
\newpage
We then select the value that minimizes the RMSE:
```{r b_i_reg-lambda, fig.width=5, fig.height=4, fig.align='center'}
plot(lambdas, rmses, type = "l")
lambda <- lambdas[which.min(rmses)]
lambda
```
After selecting a $\lambda$, we can compute the regularized estimates:
```{r b_i_reg-fit_movies}
fit_movies$b_i_reg <- sums / (n + lambda)
```
Now, let's look at the top 5 best movies based on the penalized $b_i(\lambda)$:
```{r not-obscure-top-5, echo=FALSE}
best <- fit_movies |> left_join(movie_map, by = "movieId") |>
top_n(5, b_i_reg) |>
arrange(desc(b_i_reg)) |>
mutate(average_rating = mu + b_i_reg)
test_set |>
group_by(movieId) |>
summarize(test_set_averge_rating = mean(rating)) |>
right_join(best, by = "movieId") |>
select(title, average_rating, n, test_set_averge_rating)
```
Yes! Much better! Did we improve our results?
\newpage
```{r reg_movie_rmse}
reg_movie_rmse <- left_join(test_set, fit_movies, by = "movieId") |>
mutate(pred = mu + b_i_reg) |>
summarize(rmse = RMSE(rating, pred)) |> pull(rmse)
reg_movie_rmse
reg_movie_user_rmse <- left_join(test_set, fit_movies, by = "movieId") |>
left_join(fit_users, by = "userId") |>
mutate(pred = mu + b_i_reg + b_u) |>
summarize(rmse = RMSE(rating, pred)) |> pull(rmse)
reg_movie_user_rmse
```
The penalized estimates did improve our RMSE values:
```{r rmse_results-reg-movie, echo=FALSE}
rmse_results <- rmse_results |>
add_row(method = "Regularized Movie effect", RMSE = reg_movie_rmse) |>
add_row(method = "Regularized Movie + User effect", RMSE = reg_movie_user_rmse) |>
arrange(desc(RMSE))
if(knitr::is_html_output()) {
knitr::kable(rmse_results, "html") |>
kableExtra::kable_styling(bootstrap_options = "striped", full_width = FALSE)
} else {
knitr::kable(rmse_results, "latex", booktabs = TRUE) |>
kableExtra::kable_styling(font_size = 8, full_width = TRUE) # setting width to fix pdf bug
}
```
Given the improvements by regularizing the movie effect, let's look at regularizing the user effect next.
```{r b_u_reg-rmses, cache=TRUE}
m <- rowSums(!is.na(y))
fit_users$m <- m
lambdas <- seq(0, 10, 0.1)
sums <- rowSums(sweep(y - mu, 2, fit_movies$b_i_reg), na.rm = TRUE)
rmses <- sapply(lambdas, function(lambda) {
b_u <- sums / (m + lambda)
fit_users$b_u <- b_u
left_join(test_set, fit_movies, by = "movieId") |>
left_join(fit_users, by = "userId") |>
mutate(pred = mu + b_i_reg + b_u) |>
summarize(rmse = RMSE(rating, pred)) |>
pull(rmse)
})
```
\newpage
```{r b_u_reg-plot, fig.width=5, fig.height=4, fig.align='center'}
plot(lambdas, rmses, type = "l")
lambda <- lambdas[which.min(rmses)]
lambda
```
Now, let's regularize the user effect with the selected $\lambda$:
```{r b_u_reg-fit_users}
fit_users$b_u_reg <- sums / (m + lambda)
reg_user_rmse <- left_join(test_set, fit_movies, by = "movieId") |>
left_join(fit_users, by = "userId") |>
mutate(pred = mu + b_i_reg + b_u_reg) |>
summarize(rmse = RMSE(rating, pred)) |>
pull(rmse)
reg_user_rmse
```
```{r rmse_results-reg-movie-reg-user, echo=FALSE}
rmse_results <- rmse_results |>
add_row(method = "Reg Movie + Reg User effect", RMSE = reg_user_rmse)
if(knitr::is_html_output()) {
knitr::kable(rmse_results, "html") |>
kableExtra::kable_styling(bootstrap_options = "striped", full_width = FALSE)
} else {
knitr::kable(rmse_results, "latex", booktabs = TRUE) |>
kableExtra::kable_styling(font_size = 8, full_width = TRUE) # setting width to fix pdf bug
}
```
\newpage
### Rate Effects
Is there any relationship between how often a movie is rated vs its ratings? Our intuition tells us that, on average, more people tend to rate good movies vs bad movies. But can we confirm this by exploring the `edx` dataset?
```{r edx-rating-per-year, message=FALSE, warning=FALSE, fig.width=5, fig.height=4, fig.align='center', cache=TRUE}
edx |>
group_by(movieId) |>
summarize(n = n(),
years = 2023 - first(year),
title = title[1],
rating = mean(rating)) |>
mutate(rate = n / years) |>
ggplot(aes(rate, rating)) +
geom_point() +
geom_smooth()
```
So, we can see the trend confirms that the more frequently a movie is rated, the more likely it will have above average ratings.
\newpage
First, let's start with just the rate bias effect, $b_r$:
$$
Y_{u,i} = \mu + b_r + \varepsilon_{u,i}
$$
We prep the training set:
```{r rate-training-set}
rate_to_rating <- train_set |>
mutate(rating = rating - mu) |>
group_by(movieId) |>
summarize(n = n(),
years = 2023 - first(year),
title = title[1],
rating = mean(rating)) |>
mutate(rate = n / years)
```
And to aid in our computations, we set aside a mapping between movie id and its rate:
```{r rate-rate-map}
rate_map <- rate_to_rating |>
select(movieId, rate)
```
Next, we prep our test set:
```{r rate-test-set}
test_set_rate <- test_set |>
left_join(rate_map, by = "movieId")
```
Here we want to compute $b_r$ and compare three different methods:
```{r rate-fit, message=FALSE, warning=FALSE, cache=TRUE}
fit_rate_glm <- train(rating ~ rate, method = "glm", data = rate_to_rating)
fit_rate_gam <- train(rating ~ rate, method = "gamLoess", data = rate_to_rating)
fit_rate_knn <- train(rating ~ rate, method = "knn", data = rate_to_rating)
b_r_glm <- predict(fit_rate_glm, test_set_rate)
b_r_gam <- predict(fit_rate_gam, test_set_rate)
b_r_knn <- predict(fit_rate_knn, test_set_rate)
data.frame(rating = test_set_rate$rating,
pred_glm = mu + b_r_glm,
pred_gam = mu + b_r_gam,
pred_knn = mu + b_r_knn) |>
summarize(rmse_glm = RMSE(rating, pred_glm),
rmse_gam = RMSE(rating, pred_gam),
rmse_knn = RMSE(rating, pred_knn))
```
Out of the three, only two performed better than the trivial algorithm but all performed worse than the movie effect. So instead, let's add $b_r$ to our best performing algorithm so far:
$$
Y_{u,i} = \mu + b_i + b_u + b_r + \varepsilon_{u,i}
$$
\newpage
```{r rate-movie-user, message=FALSE, warning=FALSE, cache=TRUE}
# prep traing set
rate_to_rating <- train_set |>
left_join(fit_movies, by = "movieId") |>
left_join(fit_users, by = "userId") |>
mutate(rating = rating - mu - b_i_reg - b_u_reg) |>
group_by(movieId) |>
summarize(n = n(),
years = 2023 - first(year),
title = title[1],
rating = mean(rating)) |>
mutate(rate = n / years)
# prep test set
test_set_rate <- test_set |>
left_join(fit_movies, by = "movieId") |>
left_join(fit_users, by = "userId") |>
left_join(rate_map, by = "movieId")
# compare training methods
fit_rate_glm <- train(rating ~ rate, method = "glm", data = rate_to_rating)
fit_rate_gam <- train(rating ~ rate, method = "gamLoess", data = rate_to_rating)
fit_rate_knn <- train(rating ~ rate, method = "knn", data = rate_to_rating)
b_r_glm <- predict(fit_rate_glm, test_set_rate)
b_r_gam <- predict(fit_rate_gam, test_set_rate)
b_r_knn <- predict(fit_rate_knn, test_set_rate)
test_set_b_r <- test_set_rate |>
mutate(pred_glm = mu + b_i_reg + b_u_reg + b_r_glm,
pred_gam = mu + b_i_reg + b_u_reg + b_r_gam,
pred_knn = mu + b_i_reg + b_u_reg + b_r_knn) |>
summarize(rmse_glm = RMSE(rating, pred_glm),
rmse_gam = RMSE(rating, pred_gam),
rmse_knn = RMSE(rating, pred_knn))
test_set_b_r
min(test_set_b_r) # knn was best
```
Let's add that to our RMSE results:
```{r rmse_results-movie-user-rate, echo=FALSE}
fit_rate <- fit_rate_knn
rmse_results <- rmse_results |>
add_row(method = "Reg Movie + Reg User + Rate effect", RMSE = test_set_b_r$rmse_knn)
if(knitr::is_html_output()) {
knitr::kable(rmse_results, "html") |>
kableExtra::kable_styling(bootstrap_options = "striped", full_width = FALSE)
} else {
knitr::kable(rmse_results, "latex", booktabs = TRUE) |>
kableExtra::kable_styling(font_size = 8, full_width = TRUE) # setting width to fix pdf bug
}
```
\newpage
### Date Effects
What about _when_ the user rated the movie? Could there be some relationship between the average rating per week vs date? Let's again use the `edx` dataset to find a trend, if any:
```{r edx-rating-by-week, message=FALSE, warning=FALSE, fig.width=5, fig.height=4, fig.align='center', cache=TRUE}
edx |>
mutate(date = round_date(date, unit = "week")) |>
group_by(date) |>
summarize(rating = mean(rating)) |>
ggplot(aes(date, rating)) +
geom_point() +
geom_smooth()
```
From the graph, we can see there appears to be _some_ relationship that changes direction over time. One explanation for this could be the timing of award shows like the Oscars and the Golden Globes causing viewers to watch and rate that year's best picture. Another, older movies become popular again when their actors appear in new movies or sequels, etc.
Again, let's first start with just the date bias effect, $b_d$:
$$
Y_{u,i} = \mu + b_d + \varepsilon_{u,i}
$$
\newpage
```{r date-train-test, message=FALSE, warning=FALSE}
# prep the training set
date_to_rating <- train_set |>
mutate(rating = rating - mu,
date = round_date(date, unit = "week")) |>
group_by(date) |>
summarize(rating = mean(rating))
# prep the test set
test_set_date <- test_set |>
mutate(date = round_date(date, unit = "week"))
```
And again, we compare three methods for calculating $b_d$:
```{r date-fit, message=FALSE, warning=FALSE, cache=TRUE}
fit_date_glm <- train(rating ~ date, method = "glm", data = date_to_rating)
fit_date_gam <- train(rating ~ date, method = "gamLoess", data = date_to_rating)
fit_date_knn <- train(rating ~ date, method = "knn", data = date_to_rating)
b_d_glm <- predict(fit_date_glm, test_set_date)
b_d_gam <- predict(fit_date_gam, test_set_date)
b_d_knn <- predict(fit_date_knn, test_set_date)
data.frame(rating = test_set_date$rating,
pred_glm = mu + b_d_glm,
pred_gam = mu + b_d_gam,
pred_knn = mu + b_d_knn) |>
summarize(rmse_glm = RMSE(rating, pred_glm),
rmse_gam = RMSE(rating, pred_gam),
rmse_knn = RMSE(rating, pred_knn))
```
This time, all three performed (slightly) better than the trivial algorithm but worse than the better algorithms. So, again, we add $b_d$ as a predictor to our best algorithm instead:
$$
Y_{u,i} = \mu + b_i + b_u + b_r + b_d + \varepsilon_{u,i}
$$
```{r date-movie-user-rate, message=FALSE, warning=FALSE, cache=TRUE}
# prep training set
date_to_rating <- train_set |>
left_join(fit_movies, by = "movieId") |>
left_join(fit_users, by = "userId") |>
left_join(rate_map, by = "movieId")
date_to_rating <- date_to_rating |>
mutate(b_r = predict(fit_rate, newdata = date_to_rating),
rating = rating - mu - b_i_reg - b_u_reg - b_r,
date = round_date(date, unit = "week")) |>
group_by(date) |>
summarize(rating = mean(rating))
# prep test set
test_set_date <- test_set |>
left_join(fit_movies, by = "movieId") |>
left_join(fit_users, by = "userId") |>
left_join(rate_map, by = "movieId")
test_set_date <- test_set_date |>
mutate(b_r = predict(fit_rate, newdata = test_set_date),
date = round_date(date, unit = "week"))
# compare training methods
fit_date_glm <- train(rating ~ date, method = "glm", data = date_to_rating)
fit_date_gam <- train(rating ~ date, method = "gamLoess", data = date_to_rating)
fit_date_knn <- train(rating ~ date, method = "knn", data = date_to_rating)
b_d_glm <- predict(fit_date_glm, test_set_date)
b_d_gam <- predict(fit_date_gam, test_set_date)
b_d_knn <- predict(fit_date_knn, test_set_date)
test_set_b_d <- test_set_date |>
mutate(pred_glm = mu + b_i_reg + b_u_reg + b_r + b_d_glm,
pred_gam = mu + b_i_reg + b_u_reg + b_r + b_d_gam,
pred_knn = mu + b_i_reg + b_u_reg + b_r + b_d_knn) |>
summarize(rmse_glm = RMSE(rating, pred_glm),
rmse_gam = RMSE(rating, pred_gam),
rmse_knn = RMSE(rating, pred_knn))
test_set_b_d
min(test_set_b_d) # knn was best
```
Let's update our RMSE table:
```{r rmse_results-movie-user-rate-date, echo=FALSE}
fit_date <- fit_date_knn
rmse_results <- rmse_results |>
add_row(method = "Reg Movie + Reg User + Rate + Date effect", RMSE = test_set_b_d$rmse_knn)
if(knitr::is_html_output()) {
knitr::kable(rmse_results, "html") |>
kableExtra::kable_styling(bootstrap_options = "striped", full_width = FALSE)
} else {
knitr::kable(rmse_results, "latex", booktabs = TRUE) |>
kableExtra::kable_styling(font_size = 8, full_width = TRUE) # setting width to fix pdf bug
}
```
\newpage
### Genre Effects
Do action movies get better ratings on average than dramas? What about comedies? How about thrillers?
Most movies don't fit so nicely into one genre so many of the movies in the dataset have a combination of genres. Let's first see if action adventure movies differ from romance comedy movies in terms of average ratings using the `edx` dataset:
```{r genre-edx, fig.width=5, fig.height=4, fig.align='center', cache=TRUE}
edx |>
group_by(genres) |>
summarize(n = n(),
avg = mean(rating),
se = sd(rating)/sqrt(n())) |>
filter(n >= 1000) |>
mutate(genres = reorder(genres, avg)) |>
ggplot(aes(x = genres, y = avg, ymin = avg - 2*se, ymax = avg + 2*se)) +
geom_point() +
geom_errorbar() +
theme(axis.text.x = element_text(angle = 90, hjust = 1, size = 4))
```
There does seem to be a relationship between genres and ratings, given that we have at least 1000 ratings to train on.
So let's take a look at just the genre bias effect, $b_g$, first:
$$
Y_{u,i} = \mu + b_g + \varepsilon_{u,i}
$$
\newpage
```{r genre-combo}
# training
genre_map <- train_set |>
mutate(rating = rating - mu) |>
group_by(genres) |>
summarize(n = n(),
b_g = mean(rating)) |>
filter(n >= 1000) |>
select(genres, b_g)
# test
test_set |>
semi_join(genre_map, by = "genres") |> # keep matching genres
left_join(genre_map, by = "genres") |> # b_g
mutate(pred = mu + b_g) |>
summarize(rmse = RMSE(rating, pred)) |>
pull(rmse)
```
Like all of the other effects, it performs better than trivial but that's about it. Now, let's add it as another predictor to our best algorithm:
$$
Y_{u,i} = \mu + b_i + b_u + b_r + b_d + b_g + \varepsilon_{u,i}
$$
```{r genre-combo-movie-user-rate-date-train, cache=TRUE}
# training
genre_to_rating <- train_set |>
left_join(fit_movies, by = "movieId") |>
left_join(fit_users, by = "userId") |>
left_join(rate_map, by = "movieId") |>
mutate(date = round_date(date, unit = "week"))
genre_map <- genre_to_rating |>
mutate(b_r = predict(fit_rate, newdata = genre_to_rating),
b_d = predict(fit_date, newdata = genre_to_rating),
rating = rating - mu - b_i_reg - b_u_reg - b_r - b_d) |>
group_by(genres) |>
summarize(n = n(),
b_g = mean(rating)) |>
filter(n >= 1000) |>
select(genres, b_g)
```
\newpage
```{r genre-combo-movie-user-rate-date-test, cache=TRUE}
# test
test_set_genre <- test_set |>
left_join(fit_movies, by = "movieId") |>
left_join(fit_users, by = "userId") |>
left_join(rate_map, by = "movieId") |>
mutate(date = round_date(date, unit = "week")) |>
semi_join(genre_map, by = "genres") |> # keep matching genres
left_join(genre_map, by = "genres") # add b_g
rmse_genre <- test_set_genre |>
mutate(b_r = predict(fit_rate, newdata = test_set_genre),
b_d = predict(fit_date, newdata = test_set_genre),
pred = mu + b_i_reg + b_u_reg + b_r + b_d + b_g) |>
summarize(rmse = RMSE(rating, pred)) |>
pull(rmse)
rmse_genre
```
```{r rmse_results-movie-user-rate-date-genre-combo, echo=FALSE}
rmse_results <- rmse_results |>
add_row(method = "Reg Movie + Reg User + Rate + Date + Genres effect", RMSE = rmse_genre)
if(knitr::is_html_output()) {
knitr::kable(rmse_results, "html") |>
kableExtra::kable_styling(bootstrap_options = "striped", full_width = FALSE)
} else {
knitr::kable(rmse_results, "latex", booktabs = TRUE) |>
kableExtra::kable_styling(font_size = 8, full_width = TRUE) # setting width to fix pdf bug
}
```
\newpage
Could we get even better results if we could somehow slice and dice the genres into their own categories? But first let's see what we are dealing with:
```{r genre-single-edx}
edx |>
group_by(movieId) |>
summarize(genres = first(genres)) |>
mutate(genre_count = str_count(genres, "\\|") + 1) |>
group_by(genre_count) |>
summarize(movie_count = n())
```
While we have plenty of movies that fall under one genre type, the majority of them fall into multiple with some at 5+ genres. How do we train the genre bias for those? For movies with just 2 genres, does the rating effect get duplicated or split in half between them?
How about on the test set? No matter how we train the genre bias, how do we apply its effect for movies with multiple genres? Do we take the mean per genre type? Do we sum 'em all up?
We perform some exploratory analysis to see its performance:
```{r genre-single}
# prep training for genre bias value is duplicated
genre_map <- train_set |>
mutate(rating = rating - mu) |>
separate_longer_delim(genres, "|") |>
group_by(genres) |>
summarize(n = n(),
b_g = mean(rating)) |>
select(genres, b_g)
# prep test for genre bias value is averaged
rmse_genre_dupe_mean <- test_set |>
separate_longer_delim(genres, "|") |>
left_join(genre_map, by = "genres") |> # add b_g
mutate(pred = mu + b_g) |>
group_by(movieId) |>
summarize(pred = mean(pred),
rating = first(rating)) |>
ungroup() |>
summarize(rmse = RMSE(rating, pred)) |>
pull(rmse)
rmse_genre_dupe_mean
# prep training for genre bias value is split
genre_map <- train_set |>
mutate(genre_count = str_count(genres, "\\|") + 1,
rating = (rating - mu) / genre_count) |>
separate_longer_delim(genres, "|") |>
group_by(genres) |>
summarize(n = n(),
b_g = mean(rating)) |>
select(genres, b_g)
# prep test for genre bias value is averaged
rmse_genre_split_sum <- test_set |>
separate_longer_delim(genres, "|") |>
left_join(genre_map, by = "genres") |> # add b_g
mutate(pred = mu) |>
group_by(movieId) |>
summarize(pred = mu + mean(b_g),
rating = first(rating)) |>
ungroup() |>
summarize(rmse = RMSE(rating, pred)) |>
pull(rmse)
rmse_genre_split_sum
# prep test for genre bias value is summed
rmse_genre_split_sum <- test_set |>
separate_longer_delim(genres, "|") |>
left_join(genre_map, by = "genres") |> # add b_g
mutate(pred = mu) |>
group_by(movieId) |>
summarize(pred = mu + sum(b_g),
rating = first(rating)) |>
ungroup() |>
summarize(rmse = RMSE(rating, pred)) |>
pull(rmse)
rmse_genre_split_sum
```
None of these performed better than the trivial algorithm so we can safely discard this bias from inclusion into our final algorithm.
\newpage
## Results
Our final algorithm is:
$$
Y_{u,i} = \mu + b_i + b_u + b_r + b_d + b_g + \varepsilon_{u,i}
$$
where $\mu$ is the mean over all ratings, $b_i$ is the regularized movie bias effect, $b_u$ is the regularized user bias effect, $b_r$ is the rate bias effect, $b_d$ is the date bias effect, $b_g$ is the genre bias effect and $\varepsilon_{i,u}$ is the independent errors sampled from the same distribution centered at zero.
We are now ready to calculate the RMSE for our `final_holdout_test` set that we set aside at the beginning.
```{r movie-user-rate-date-genre-final-holdout-test-1a, cache=TRUE}
final_holdout_test_set <- final_holdout_test |>
left_join(fit_movies, by = "movieId") |>
left_join(fit_users, by = "userId") |>
left_join(rate_map, by = "movieId") |>
mutate(date = round_date(date, unit = "week")) |>
semi_join(genre_map, by = "genres") |>
left_join(genre_map, by = "genres")
nrow(final_holdout_test)
nrow(final_holdout_test_set)
```
```{r movie-user-rate-date-genre-final-holdout-test-1b, eval=FALSE}
rmse_final_holdout_test <- final_holdout_test_set |>
mutate(b_r = predict(fit_rate, final_holdout_test_set),
b_d = predict(fit_date, final_holdout_test_set),
pred = mu + b_i_reg + b_u_reg + b_r + b_d + b_g) |>
summarize(rmse = RMSE(rating, pred)) |>