diff --git a/filterpy/stats/stats.py b/filterpy/stats/stats.py index 2159eb3..689a455 100644 --- a/filterpy/stats/stats.py +++ b/filterpy/stats/stats.py @@ -597,7 +597,7 @@ def _is_inside_ellipse(x, y, ex, ey, orientation, width, height): return ((x-ex)*co - (y-ey)*so)**2/width**2 + \ ((x-ex)*so + (y-ey)*co)**2/height**2 <= 1 -def _to_cov(x,n): +def _to_cov(x, n): """ If x is a scalar, returns a covariance matrix generated from it as the identity matrix multiplied by x. The dimension will be nxn. If x is already a numpy array then it is returned unchanged. @@ -608,7 +608,14 @@ def _to_cov(x,n): x = np.asarray(x)[0] return x except: - return np.eye(n) * x + cov = np.asarray(x) + try: + # asarray of a scalar returns an unsized object, so len will raise + # an exception + len(cov) + return cov + except: + return np.eye(n) * x def _do_plot_test(): @@ -704,14 +711,24 @@ def NESS(xs, est_xs, ps): if __name__ == '__main__': - ax = plot_gaussian_pdf(2, 3) + """ax = plot_gaussian_pdf(2, 3) plot_gaussian_cdf(2, 3, ax=ax) plt.show() ys =np.abs(np.random.randn(100)) ys /= np.sum(ys) - plot_discrete_cdf(xs=None, ys=ys) - + plot_discrete_cdf(xs=None, ys=ys)""" + + mean=(0,0) + + cov=[[1,.5],[.5,1]] + print("For list and np.array covariances:") + for covariance in (cov,np.asarray(cov)): + a = [[multivariate_gaussian((i,j),mean,covariance) + for i in (-1,0,1)] + for j in (-1,0,1)] + print(np.asarray(a)) + print() #P1 = [[2, 1.9], [1.9, 2]] #plot_covariance_ellipse((10, 10), P1, facecolor='y', alpha=0.6) diff --git a/filterpy/stats/tests/test_stats.py b/filterpy/stats/tests/test_stats.py index f2bb798..4d75b8a 100644 --- a/filterpy/stats/tests/test_stats.py +++ b/filterpy/stats/tests/test_stats.py @@ -14,7 +14,30 @@ for more information. """ -from filterpy.stats import norm_cdf +from filterpy.stats import norm_cdf, multivariate_gaussian +import numpy as np + + +def test_multivariate_gaussian(): + + # test that we treat lists and arrays the same + mean= (0, 0) + cov=[[1, .5], [.5, 1]] + a = [[multivariate_gaussian((i, j), mean, cov) + for i in (-1, 0, 1)] + for j in (-1, 0, 1)] + + b = [[multivariate_gaussian((i, j), mean, np.asarray(cov)) + for i in (-1, 0, 1)] + for j in (-1, 0, 1)] + + assert np.allclose(a, b) + + a = [[multivariate_gaussian((i, j), np.asarray(mean), cov) + for i in (-1, 0, 1)] + for j in (-1, 0, 1)] + assert np.allclose(a, b) + def test_norm_cdf():