forked from Puzer/stylegan-encoder
-
Notifications
You must be signed in to change notification settings - Fork 180
/
train.py
executable file
·199 lines (172 loc) · 16.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
"""Main entry point for training StyleGAN and ProGAN networks."""
import copy
import dnnlib
from dnnlib import EasyDict
import config
from metrics import metric_base
#----------------------------------------------------------------------------
# Official training configs for StyleGAN, targeted mainly for FFHQ.
if 1:
desc = 'sgan' # Description string included in result subdir name.
train = EasyDict(run_func_name='training.training_loop.training_loop') # Options for training loop.
G = EasyDict(func_name='training.networks_stylegan.G_style') # Options for generator network.
D = EasyDict(func_name='training.networks_stylegan.D_basic') # Options for discriminator network.
G_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8) # Options for generator optimizer.
D_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8) # Options for discriminator optimizer.
G_loss = EasyDict(func_name='training.loss.G_logistic_nonsaturating') # Options for generator loss.
D_loss = EasyDict(func_name='training.loss.D_logistic_simplegp', r1_gamma=10.0) # Options for discriminator loss.
dataset = EasyDict() # Options for load_dataset().
sched = EasyDict() # Options for TrainingSchedule.
grid = EasyDict(size='4k', layout='random') # Options for setup_snapshot_image_grid().
metrics = [metric_base.fid50k] # Options for MetricGroup.
submit_config = dnnlib.SubmitConfig() # Options for dnnlib.submit_run().
tf_config = {'rnd.np_random_seed': 1000} # Options for tflib.init_tf().
# Dataset.
desc += '-ffhq'; dataset = EasyDict(tfrecord_dir='ffhq'); train.mirror_augment = True
# desc += '-cub'; dataset = EasyDict(tfrecord_dir='CUB'); train.mirror_augment = True
# desc += 'celebahq-binary'; dataset = EasyDict(tfrecord_dir='celebahq-binary', resolution=256); train.mirror_augment = True
#desc += 'coco_train'; dataset = EasyDict(tfrecord_dir='coco_train', resolution=256); train.mirror_augment = True
#desc += '-celebahq'; dataset = EasyDict(tfrecord_dir='celebahq'); train.mirror_augment = True
#desc += '-bedroom'; dataset = EasyDict(tfrecord_dir='lsun-bedroom-full'); train.mirror_augment = False
#desc += '-car'; dataset = EasyDict(tfrecord_dir='lsun-car-512x384'); train.mirror_augment = False
#desc += '-cat'; dataset = EasyDict(tfrecord_dir='lsun-cat-full'); train.mirror_augment = False
# Number of GPUs.
#desc += '-1gpu'; submit_config.num_gpus = 1; sched.minibatch_base = 4; sched.minibatch_dict = {4: 128, 8: 128, 16: 128, 32: 64, 64: 32, 128: 16, 256: 8, 512: 4}
#desc += '-2gpu'; submit_config.num_gpus = 2; sched.minibatch_base = 8; sched.minibatch_dict = {4: 256, 8: 256, 16: 128, 32: 64, 64: 32, 128: 16, 256: 8}
#desc += '-4gpu'; submit_config.num_gpus = 4; sched.minibatch_base = 16; sched.minibatch_dict = {4: 512, 8: 256, 16: 128, 32: 64, 64: 32, 128: 16}
desc += '-8gpu'; submit_config.num_gpus = 8; sched.minibatch_base = 32; sched.minibatch_dict = {4: 512, 8: 256, 16: 128, 32: 64, 64: 32}
# Class conditioning
# desc += '-cond'; dataset.max_label_size = 'full' # conditioned on full label
# desc += '-cond1'; dataset.max_label_size = 128 # conditioned on first component of the label
#desc += '-fp16'; G.dtype = 'float16'; D.dtype = 'float16'; G.epsilon=1e-4; G_opt.use_loss_scaling = True; D_opt.use_loss_scaling = True; sched.max_minibatch_per_gpu = {512: 16, 1024: 8}
# Default options.
train.total_kimg = 25000
sched.lod_initial_resolution = 8
sched.G_lrate_dict = {128: 0.0015, 256: 0.002, 512: 0.003, 1024: 0.003}
sched.D_lrate_dict = EasyDict(sched.G_lrate_dict)
# WGAN-GP loss for CelebA-HQ.
#desc += '-wgangp'; G_loss = EasyDict(func_name='training.loss.G_wgan'); D_loss = EasyDict(func_name='training.loss.D_wgan_gp'); sched.G_lrate_dict = {k: min(v, 0.002) for k, v in sched.G_lrate_dict.items()}; sched.D_lrate_dict = EasyDict(sched.G_lrate_dict)
# Table 1.
#desc += '-tuned-baseline'; G.use_styles = False; G.use_pixel_norm = True; G.use_instance_norm = False; G.mapping_layers = 0; G.truncation_psi = None; G.const_input_layer = False; G.style_mixing_prob = 0.0; G.use_noise = False
#desc += '-add-mapping-and-styles'; G.const_input_layer = False; G.style_mixing_prob = 0.0; G.use_noise = False
#desc += '-remove-traditional-input'; G.style_mixing_prob = 0.0; G.use_noise = False
#desc += '-add-noise-inputs'; G.style_mixing_prob = 0.0
#desc += '-mixing-regularization' # default
# Table 2.
#desc += '-mix0'; G.style_mixing_prob = 0.0
#desc += '-mix50'; G.style_mixing_prob = 0.5
#desc += '-mix90'; G.style_mixing_prob = 0.9 # default
#desc += '-mix100'; G.style_mixing_prob = 1.0
# Table 4.
#desc += '-traditional-0'; G.use_styles = False; G.use_pixel_norm = True; G.use_instance_norm = False; G.mapping_layers = 0; G.truncation_psi = None; G.const_input_layer = False; G.style_mixing_prob = 0.0; G.use_noise = False
#desc += '-traditional-8'; G.use_styles = False; G.use_pixel_norm = True; G.use_instance_norm = False; G.mapping_layers = 8; G.truncation_psi = None; G.const_input_layer = False; G.style_mixing_prob = 0.0; G.use_noise = False
#desc += '-stylebased-0'; G.mapping_layers = 0
#desc += '-stylebased-1'; G.mapping_layers = 1
#desc += '-stylebased-2'; G.mapping_layers = 2
#desc += '-stylebased-8'; G.mapping_layers = 8 # default
#----------------------------------------------------------------------------
# Official training configs for Progressive GAN, targeted mainly for CelebA-HQ.
if 0:
desc = 'pgan' # Description string included in result subdir name.
train = EasyDict(run_func_name='training.training_loop.training_loop') # Options for training loop.
G = EasyDict(func_name='training.networks_progan.G_paper') # Options for generator network.
D = EasyDict(func_name='training.networks_progan.D_paper') # Options for discriminator network.
G_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8) # Options for generator optimizer.
D_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8) # Options for discriminator optimizer.
G_loss = EasyDict(func_name='training.loss.G_wgan') # Options for generator loss.
D_loss = EasyDict(func_name='training.loss.D_wgan_gp') # Options for discriminator loss.
dataset = EasyDict() # Options for load_dataset().
sched = EasyDict() # Options for TrainingSchedule.
grid = EasyDict(size='1080p', layout='random') # Options for setup_snapshot_image_grid().
metrics = [metric_base.fid50k] # Options for MetricGroup.
submit_config = dnnlib.SubmitConfig() # Options for dnnlib.submit_run().
tf_config = {'rnd.np_random_seed': 1000} # Options for tflib.init_tf().
# Dataset (choose one).
desc += '-celebahq'; dataset = EasyDict(tfrecord_dir='celebahq'); train.mirror_augment = True
#desc += '-celeba'; dataset = EasyDict(tfrecord_dir='celeba'); train.mirror_augment = True
#desc += '-cifar10'; dataset = EasyDict(tfrecord_dir='cifar10')
#desc += '-cifar100'; dataset = EasyDict(tfrecord_dir='cifar100')
#desc += '-svhn'; dataset = EasyDict(tfrecord_dir='svhn')
#desc += '-mnist'; dataset = EasyDict(tfrecord_dir='mnist')
#desc += '-mnistrgb'; dataset = EasyDict(tfrecord_dir='mnistrgb')
#desc += '-syn1024rgb'; dataset = EasyDict(class_name='training.dataset.SyntheticDataset', resolution=1024, num_channels=3)
#desc += '-lsun-airplane'; dataset = EasyDict(tfrecord_dir='lsun-airplane-100k'); train.mirror_augment = True
#desc += '-lsun-bedroom'; dataset = EasyDict(tfrecord_dir='lsun-bedroom-100k'); train.mirror_augment = True
#desc += '-lsun-bicycle'; dataset = EasyDict(tfrecord_dir='lsun-bicycle-100k'); train.mirror_augment = True
#desc += '-lsun-bird'; dataset = EasyDict(tfrecord_dir='lsun-bird-100k'); train.mirror_augment = True
#desc += '-lsun-boat'; dataset = EasyDict(tfrecord_dir='lsun-boat-100k'); train.mirror_augment = True
#desc += '-lsun-bottle'; dataset = EasyDict(tfrecord_dir='lsun-bottle-100k'); train.mirror_augment = True
#desc += '-lsun-bridge'; dataset = EasyDict(tfrecord_dir='lsun-bridge-100k'); train.mirror_augment = True
#desc += '-lsun-bus'; dataset = EasyDict(tfrecord_dir='lsun-bus-100k'); train.mirror_augment = True
#desc += '-lsun-car'; dataset = EasyDict(tfrecord_dir='lsun-car-100k'); train.mirror_augment = True
#desc += '-lsun-cat'; dataset = EasyDict(tfrecord_dir='lsun-cat-100k'); train.mirror_augment = True
#desc += '-lsun-chair'; dataset = EasyDict(tfrecord_dir='lsun-chair-100k'); train.mirror_augment = True
#desc += '-lsun-churchoutdoor'; dataset = EasyDict(tfrecord_dir='lsun-churchoutdoor-100k'); train.mirror_augment = True
#desc += '-lsun-classroom'; dataset = EasyDict(tfrecord_dir='lsun-classroom-100k'); train.mirror_augment = True
#desc += '-lsun-conferenceroom'; dataset = EasyDict(tfrecord_dir='lsun-conferenceroom-100k'); train.mirror_augment = True
#desc += '-lsun-cow'; dataset = EasyDict(tfrecord_dir='lsun-cow-100k'); train.mirror_augment = True
#desc += '-lsun-diningroom'; dataset = EasyDict(tfrecord_dir='lsun-diningroom-100k'); train.mirror_augment = True
#desc += '-lsun-diningtable'; dataset = EasyDict(tfrecord_dir='lsun-diningtable-100k'); train.mirror_augment = True
#desc += '-lsun-dog'; dataset = EasyDict(tfrecord_dir='lsun-dog-100k'); train.mirror_augment = True
#desc += '-lsun-horse'; dataset = EasyDict(tfrecord_dir='lsun-horse-100k'); train.mirror_augment = True
#desc += '-lsun-kitchen'; dataset = EasyDict(tfrecord_dir='lsun-kitchen-100k'); train.mirror_augment = True
#desc += '-lsun-livingroom'; dataset = EasyDict(tfrecord_dir='lsun-livingroom-100k'); train.mirror_augment = True
#desc += '-lsun-motorbike'; dataset = EasyDict(tfrecord_dir='lsun-motorbike-100k'); train.mirror_augment = True
#desc += '-lsun-person'; dataset = EasyDict(tfrecord_dir='lsun-person-100k'); train.mirror_augment = True
#desc += '-lsun-pottedplant'; dataset = EasyDict(tfrecord_dir='lsun-pottedplant-100k'); train.mirror_augment = True
#desc += '-lsun-restaurant'; dataset = EasyDict(tfrecord_dir='lsun-restaurant-100k'); train.mirror_augment = True
#desc += '-lsun-sheep'; dataset = EasyDict(tfrecord_dir='lsun-sheep-100k'); train.mirror_augment = True
#desc += '-lsun-sofa'; dataset = EasyDict(tfrecord_dir='lsun-sofa-100k'); train.mirror_augment = True
#desc += '-lsun-tower'; dataset = EasyDict(tfrecord_dir='lsun-tower-100k'); train.mirror_augment = True
#desc += '-lsun-train'; dataset = EasyDict(tfrecord_dir='lsun-train-100k'); train.mirror_augment = True
#desc += '-lsun-tvmonitor'; dataset = EasyDict(tfrecord_dir='lsun-tvmonitor-100k'); train.mirror_augment = True
# Conditioning & snapshot options.
#desc += '-cond'; dataset.max_label_size = 'full' # conditioned on full label
#desc += '-cond1'; dataset.max_label_size = 1 # conditioned on first component of the label
#desc += '-g4k'; grid.size = '4k'
#desc += '-grpc'; grid.layout = 'row_per_class'
# Config presets (choose one).
#desc += '-preset-v1-1gpu'; submit_config.num_gpus = 1; D.mbstd_group_size = 16; sched.minibatch_base = 16; sched.minibatch_dict = {256: 14, 512: 6, 1024: 3}; sched.lod_training_kimg = 800; sched.lod_transition_kimg = 800; train.total_kimg = 19000
desc += '-preset-v2-1gpu'; submit_config.num_gpus = 1; sched.minibatch_base = 4; sched.minibatch_dict = {4: 128, 8: 128, 16: 128, 32: 64, 64: 32, 128: 16, 256: 8, 512: 4}; sched.G_lrate_dict = {1024: 0.0015}; sched.D_lrate_dict = EasyDict(sched.G_lrate_dict); train.total_kimg = 12000
#desc += '-preset-v2-2gpus'; submit_config.num_gpus = 2; sched.minibatch_base = 8; sched.minibatch_dict = {4: 256, 8: 256, 16: 128, 32: 64, 64: 32, 128: 16, 256: 8}; sched.G_lrate_dict = {512: 0.0015, 1024: 0.002}; sched.D_lrate_dict = EasyDict(sched.G_lrate_dict); train.total_kimg = 12000
#desc += '-preset-v2-4gpus'; submit_config.num_gpus = 4; sched.minibatch_base = 16; sched.minibatch_dict = {4: 512, 8: 256, 16: 128, 32: 64, 64: 32, 128: 16}; sched.G_lrate_dict = {256: 0.0015, 512: 0.002, 1024: 0.003}; sched.D_lrate_dict = EasyDict(sched.G_lrate_dict); train.total_kimg = 12000
#desc += '-preset-v2-8gpus'; submit_config.num_gpus = 8; sched.minibatch_base = 32; sched.minibatch_dict = {4: 512, 8: 256, 16: 128, 32: 64, 64: 32}; sched.G_lrate_dict = {128: 0.0015, 256: 0.002, 512: 0.003, 1024: 0.003}; sched.D_lrate_dict = EasyDict(sched.G_lrate_dict); train.total_kimg = 12000
# Numerical precision (choose one).
desc += '-fp32'; sched.max_minibatch_per_gpu = {256: 16, 512: 8, 1024: 4}
#desc += '-fp16'; G.dtype = 'float16'; D.dtype = 'float16'; G.pixelnorm_epsilon=1e-4; G_opt.use_loss_scaling = True; D_opt.use_loss_scaling = True; sched.max_minibatch_per_gpu = {512: 16, 1024: 8}
# Disable individual features.
#desc += '-nogrowing'; sched.lod_initial_resolution = 1024; sched.lod_training_kimg = 0; sched.lod_transition_kimg = 0; train.total_kimg = 10000
#desc += '-nopixelnorm'; G.use_pixelnorm = False
#desc += '-nowscale'; G.use_wscale = False; D.use_wscale = False
#desc += '-noleakyrelu'; G.use_leakyrelu = False
#desc += '-nosmoothing'; train.G_smoothing_kimg = 0.0
#desc += '-norepeat'; train.minibatch_repeats = 1
#desc += '-noreset'; train.reset_opt_for_new_lod = False
# Special modes.
#desc += '-BENCHMARK'; sched.lod_initial_resolution = 4; sched.lod_training_kimg = 3; sched.lod_transition_kimg = 3; train.total_kimg = (8*2+1)*3; sched.tick_kimg_base = 1; sched.tick_kimg_dict = {}; train.image_snapshot_ticks = 1000; train.network_snapshot_ticks = 1000
#desc += '-BENCHMARK0'; sched.lod_initial_resolution = 1024; train.total_kimg = 10; sched.tick_kimg_base = 1; sched.tick_kimg_dict = {}; train.image_snapshot_ticks = 1000; train.network_snapshot_ticks = 1000
#desc += '-VERBOSE'; sched.tick_kimg_base = 1; sched.tick_kimg_dict = {}; train.image_snapshot_ticks = 1; train.network_snapshot_ticks = 100
#desc += '-GRAPH'; train.save_tf_graph = True
#desc += '-HIST'; train.save_weight_histograms = True
#----------------------------------------------------------------------------
# Main entry point for training.
# Calls the function indicated by 'train' using the selected options.
def main():
kwargs = EasyDict(train)
kwargs.update(G_args=G, D_args=D, G_opt_args=G_opt, D_opt_args=D_opt, G_loss_args=G_loss, D_loss_args=D_loss)
kwargs.update(dataset_args=dataset, sched_args=sched, grid_args=grid, metric_arg_list=metrics, tf_config=tf_config)
kwargs.submit_config = copy.deepcopy(submit_config)
kwargs.submit_config.run_dir_root = dnnlib.submission.submit.get_template_from_path(config.result_dir)
kwargs.submit_config.run_dir_ignore += config.run_dir_ignore
kwargs.submit_config.run_desc = desc
dnnlib.submit_run(**kwargs)
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------