-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
315 lines (275 loc) · 11.1 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import torch
from tqdm import tqdm
import h5py
import os.path as path
import os
import soundfile as sf
import numpy as np
from torch.utils.tensorboard import SummaryWriter
import queue
import time
class ResultsLogger():
def __init__(self,name,data_dir,sr):
self.data_dir = data_dir
self.filename = name
self.step_count = 0
self.store_dict = {}
self.sr = sr
def store_step(self,data):
if(self.step_count == 0):
for x in data:
for k in x.keys():
if(k == 'audio' or k == 'synth_audio'):
data = x[k].squeeze(-1).reshape(-1)
else:
data = x[k]
self.store_dict[k] = data.detach().cpu().numpy()
else:
for x in data:
for k in x.keys():
if(k == 'audio' or k == 'synth_audio'):
data = x[k].squeeze(-1).reshape(-1)
concat_dim = 0
else:
data = x[k]
concat_dim = -3
self.store_dict[k] = np.concatenate(
(self.store_dict[k],data.detach().cpu().numpy()),
axis=concat_dim)
#print("[DEBUG] ResultsLogger: Concat {}: {}".format(k,self.store_dict[k].shape))
self.step_count += 1
return
def save_and_close(self):
#print("[DEBUG] ResultsLogger: Saving {}.h5".format(self.filename))
h5f = h5py.File(f'{self.data_dir}/{self.filename}.h5', 'w')
#print("\t self.store_dict.keys() {}".format(self.store_dict.keys()))
#print("\t self.store_dict['audio'] {}".format(self.store_dict['audio'].shape))
#print("\t self.store_dict['synth_audio'] {}".format(self.store_dict['synth_audio'].shape))
for k in self.store_dict.keys():
h5f.create_dataset(k, data=self.store_dict[k])
h5f.close()
sf.write(
path.join(self.data_dir, f"ref_{self.filename}.wav"),
np.squeeze(self.store_dict['audio']),
self.sr,
)
sf.write(
path.join(self.data_dir, f'synth_{self.filename}.wav'),
np.squeeze(self.store_dict['synth_audio']),
self.sr,
)
self.step_count = 0
self.store_dict = {}
class Hyperparams():
def __init__(self,steps,loss_fn,opt,scheduler,lr,lr_decay_steps,lr_decay_rate,n_store_best,batch_size,test_loss_fn = None,grad_clip_norm=None):
self.steps = steps
self.loss_fn = loss_fn
self.test_loss_fn = test_loss_fn
self.opt = opt
self.scheduler = scheduler
self.batch_size = batch_size
self.lr = lr
self.lr_decay_steps = lr_decay_steps
self.lr_decay_rate = lr_decay_rate
self.grad_clip_norm = grad_clip_norm
self.n_store_best = n_store_best
# Let's instantiate it using Hydra?
class Trainer():
def __init__(self,loaders,preprocessor,
hyperparams:Hyperparams,device):
self.loaders = loaders
self.preprocessor = preprocessor
self.hp = hyperparams
self.best_val_loss = np.inf
self.device = device
self.model = None
self.writer = None
self.opt = None
#self.loss_fn = None
self.scheduler = None
self.train_step_counter = None
self.best_model_epoch = None
self.modelqueue = queue.SimpleQueue()
self.epochs = self.hp.steps // len(loaders['train']) + 1
return
def register_stats(self,train_loss,val_loss,e):
self.writer.add_scalar("train_loss", train_loss, e)
self.writer.add_scalar("val_loss", val_loss, e)
self.writer.add_scalar("lr", self.scheduler.get_last_lr()[0], e)
self.writer.add_scalar("reverb_decay", self.model.get_params('reverb_decay'), e)
self.writer.add_scalar("reverb_wet", self.model.get_params('reverb_wet'), e)
def count_parameters(self,model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def checkpoint(self,e):
if(e==-1):
torch.save(
self.model.state_dict(),
path.join("state_best.pth"),
)
return
torch.save(
self.model.state_dict(),
path.join(f"state_{e:06d}.pth"),
)
self.best_model_epoch = e
# Register new epoch to keep a trail of best models.
self.modelqueue.put(e)
# Delete a previous checkpoint if trail is bigger than indicated.
if(self.modelqueue.qsize()>self.hp.n_store_best):
delete_model_epoch = self.modelqueue.get()
#print("[DEBUG] Deleting model from epoch: {}".format(delete_model_epoch))
os.remove(
path.join(f"state_{delete_model_epoch:06d}.pth")
)
return
def load_checkpoint(self,model,e):
if(self.device=='cpu'):
if(e==-1):
print("[INFO] Trainer.load_checkpoint on CPU: best")
model.load_state_dict(
torch.load(
path.join(f"state_best.pth"),map_location=torch.device('cpu')
))
elif(e!=0):
print("[INFO] Trainer.load_checkpoint on CPU: {}".format(e))
model.load_state_dict(
torch.load(
path.join(f"state_{e:06d}.pth"),map_location=torch.device('cpu')
))
else:
if(e==-1):
print("[INFO] Trainer.load_checkpoint: best")
model.load_state_dict(
torch.load(
path.join(f"state_best.pth")
))
elif(e!=0):
print("[INFO] Trainer.load_checkpoint: {}".format(e))
model.load_state_dict(
torch.load(
path.join(f"state_{e:06d}.pth")
))
return model
def train(self):
# The training loop
for e in tqdm(range(self.epochs)):
train_loss = self.train_step(self.model)
val_loss = self.val_step(self.model)
if self.hp.lr_decay_steps < self.train_step_counter:
self.scheduler.step()
self.train_step_counter = 0
self.register_stats(train_loss,val_loss,e)
if(self.best_val_loss > val_loss):
self.best_val_loss = val_loss
self.checkpoint(e)
return
def train_step(self,model):
'''
Run a train epoch
'''
model = model.train()
mean_loss = 0
nb = 0
for x in self.loaders['train']:
x = self.preprocessor.run(x)
#print("INPUTS")
#for k in x.keys():
# print(f'\t{k}: {x[k].size()} ')
#print('')
self.opt.zero_grad()
synth_out = model(x)
#print("OUTPUTS")
#for k in synth_out.keys():
# print(f'\t{k}: {synth_out[k].size()} ')
#print('')
loss = self.hp.loss_fn(x['audio'],synth_out['synth_audio'])
# TODO: Clip gradients
loss.backward()
if(self.hp.grad_clip_norm is not None):
torch.nn.utils.clip_grad_norm_(model.parameters(), self.hp.grad_clip_norm)
self.opt.step()
nb += 1
mean_loss += (loss.item() - mean_loss) / nb
self.train_step_counter += 1
# Check for NaN during training
if (torch.isnan(loss).any()):
raise Exception("Warning - NaN detected in loss: {}".format(loss.item()))
return mean_loss
@torch.no_grad()
def val_step(self,model):
'''
Run a validation epoch
'''
model = model.eval()
mean_loss = 0
nb = 0
for x in self.loaders['valid']:
x = self.preprocessor.run(x)
synth_out = model(x)
loss = self.hp.loss_fn(x['audio'],synth_out['synth_audio'])
nb += 1
mean_loss += (loss.item() - mean_loss) / nb
return mean_loss
@torch.no_grad()
def test(self,model):
'''
Test the network over validation and test sets
'''
time.sleep(5) #Wait for all models to be written to disk.
model = model.eval()
for k in self.loaders.keys():
if(k == 'train'): continue
print(k)
if(k == 'test_cnt'):
# NOTE: Force test of long files on CPU
# (there's an error on GPU rendering for long continuous instances.)
# seems to be torch.cumsum according to comments online. TODO: Check this
print(f'[INFO] running continuous rendering test on cpu. Enabling cumsum_nd() - rendering may be slow . . .')
model = model.to('cpu')
model.enable_cumsum_nd()
mean_loss = 0
nb = 0
logger = ResultsLogger(f'{k}',
data_dir='.',
sr=model.get_sr())
for x in self.loaders[k]:
x = self.preprocessor.run(x)
synth_out = model(x)
# Check if we apply a special test fn for testing only
if(self.hp.test_loss_fn is not None):
loss = self.hp.test_loss_fn(x['audio'],synth_out['synth_audio'])
else:
loss = self.hp.loss_fn(x['audio'],synth_out['synth_audio'])
nb += 1
mean_loss += (loss.item() - mean_loss) / nb
logger.store_step([x,synth_out])
if(self.writer is not None):
self.writer.add_scalar(f'final_{k}_loss', mean_loss)
else:
print('{} loss: {}'.format(k,mean_loss))
logger.save_and_close()
return mean_loss
def run(self,model,mode='train',resume_epoch=None):
torch.manual_seed(1234)
self.model = model.to(self.device)
n_params = self.count_parameters(self.model)
print('[INFO] Model has {} trainable parameters.'.format(n_params))
# Load checkpoint if needed (resume_epoch=-1 for best model)
if(resume_epoch != 0):
self.model = self.load_checkpoint(self.model,resume_epoch)
# we should store and restore the state dict of scheduler and optimizer too.
if(mode == 'train'):
self.best_model_epoch = 0
self.train_step_counter = 0
self.writer = SummaryWriter(path.join('.'), flush_secs=20)
self.opt = self.hp.opt(model.parameters(),lr=self.hp.lr)
self.scheduler = self.hp.scheduler(self.opt,gamma=self.hp.lr_decay_rate)
# Store number of parameters in tensorboard.
self.writer.add_scalar("n_params", n_params )
self.train()
self.model = self.load_checkpoint(self.model,self.best_model_epoch)
self.checkpoint(-1) #Store a separate copy of the best model.
self.test(self.model)
elif(mode == 'test'):
self.test(self.model)
return model