forked from jdh-algo/JoyVASA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
190 lines (171 loc) · 7.79 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import tyro
import subprocess
import gradio as gr
import os.path as osp
import platform
from src.utils.helper import load_description
from src.gradio_pipeline import GradioPipeline, GradioPipelineAnimal
from src.config.crop_config import CropConfig
from src.config.argument_config import ArgumentConfig
from src.config.inference_config import InferenceConfig
if platform.system() == "Windows":
import pathlib
temp = pathlib.PosixPath
pathlib.PosixPath = pathlib.WindowsPath
def partial_fields(target_class, kwargs):
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
def fast_check_ffmpeg():
try:
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
return True
except:
return False
ffmpeg_dir = os.path.join(os.getcwd(), "ffmpeg")
if osp.exists(ffmpeg_dir):
os.environ["PATH"] += (os.pathsep + ffmpeg_dir)
if not fast_check_ffmpeg():
raise ImportError(
"FFmpeg is not installed. Please install FFmpeg (including ffmpeg and ffprobe) before running this script. https://ffmpeg.org/download.html"
)
# set tyro theme
tyro.extras.set_accent_color("bright_cyan")
args = tyro.cli(ArgumentConfig)
# specify configs for inference
inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
############# Functions #################
if args.gradio_temp_dir not in (None, ''):
os.environ["GRADIO_TEMP_DIR"] = args.gradio_temp_dir
os.makedirs(args.gradio_temp_dir, exist_ok=True)
gradio_pipeline_human = GradioPipeline(
inference_cfg=inference_cfg,
crop_cfg=crop_cfg,
args=args
)
gradio_pipeline_animal = GradioPipelineAnimal(
inference_cfg=inference_cfg,
crop_cfg=crop_cfg,
args=args
)
def gpu_wrapped_execute_a2v(*args, **kwargs):
# print("args: ", args, args[5])
if args[5] == "animal":
return gradio_pipeline_animal.execute_a2v(*args, **kwargs)
else:
return gradio_pipeline_human.execute_a2v(*args, **kwargs)
################# GUI ################
title_md = "assets/gradio/gradio_title.md"
example_reference_dir = "assets/examples/imgs"
example_audio_dir = "assets/examples/audios"
data_examples_a2v = [
[osp.join(example_reference_dir, "joyvasa_001.png"), osp.join(example_audio_dir, "joyvasa_001.wav"), "animal", False, 4.0],
[osp.join(example_reference_dir, "joyvasa_002.png"), osp.join(example_audio_dir, "joyvasa_002.wav"), "animal", False, 4.0],
[osp.join(example_reference_dir, "joyvasa_003.png"), osp.join(example_audio_dir, "joyvasa_003.wav"), "human", False, 4.0],
[osp.join(example_reference_dir, "joyvasa_004.png"), osp.join(example_audio_dir, "joyvasa_004.wav"), "human", False, 4.0],
[osp.join(example_reference_dir, "joyvasa_005.png"), osp.join(example_audio_dir, "joyvasa_005.wav"), "human", False, 4.0],
[osp.join(example_reference_dir, "joyvasa_006.png"), osp.join(example_audio_dir, "joyvasa_006.wav"), "human", False, 4.0],
]
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Plus Jakarta Sans")])) as demo:
gr.HTML(load_description(title_md))
# Inputs & Outputs
gr.Markdown(load_description("assets/gradio/gradio_description_upload.md"))
with gr.Row():
with gr.Accordion(open=True, label="🖼️ Reference Image"):
input_image = gr.Image(type="filepath", width=512, label="Reference Image")
gr.Examples(
examples=[
[osp.join(example_reference_dir, "joyvasa_001.png")],
[osp.join(example_reference_dir, "joyvasa_002.png")],
[osp.join(example_reference_dir, "joyvasa_003.png")],
[osp.join(example_reference_dir, "joyvasa_004.png")],
[osp.join(example_reference_dir, "joyvasa_005.png")],
[osp.join(example_reference_dir, "joyvasa_006.png")],
],
inputs=[input_image],
cache_examples=False,
)
with gr.Accordion(open=True, label="🎵 Input Audio"):
input_audio = gr.Audio(type="filepath", label="Input Audio")
gr.Examples(
examples=[
[osp.join(example_audio_dir, "joyvasa_001.wav")],
[osp.join(example_audio_dir, "joyvasa_002.wav")],
[osp.join(example_audio_dir, "joyvasa_003.wav")],
[osp.join(example_audio_dir, "joyvasa_004.wav")],
[osp.join(example_audio_dir, "joyvasa_005.wav")],
[osp.join(example_audio_dir, "joyvasa_006.wav")],
],
inputs=[input_audio],
cache_examples=False,
)
with gr.Accordion(open=True, label="🎬 Output Video",):
output_video = gr.Video(autoplay=False, interactive=False, width=512)
# Configs
gr.Markdown(load_description("assets/gradio/gradio_description_configuration.md"))
with gr.Column():
with gr.Accordion(open=True, label="Key Animation Options"):
with gr.Row():
animation_mode =gr.Radio(['human', 'animal'], value="human", label="Animation Mode")
flag_do_crop_input = gr.Checkbox(value=True, label="do crop (image)")
cfg_scale = gr.Number(value=4.0, label="cfg_scale", minimum=0.0, maximum=10.0, step=0.5)
with gr.Accordion(open=False, label="Optional Animation Options"):
with gr.Row():
driving_option_input = gr.Radio(['expression-friendly', 'pose-friendly'], value="expression-friendly", label="driving option")
driving_multiplier = gr.Number(value=1.0, label="driving multiplier", minimum=0.0, maximum=2.0, step=0.02)
with gr.Row():
flag_normalize_lip = gr.Checkbox(value=True, label="normalize lip")
flag_relative_motion = gr.Checkbox(value=True, label="relative motion")
flag_remap_input = gr.Checkbox(value=True, label="paste-back")
flag_stitching_input = gr.Checkbox(value=True, label="stitching")
with gr.Accordion(open=False, label="Optional Options for Reference Image"):
with gr.Row():
scale = gr.Number(value=2.3, label="image crop scale", minimum=1.8, maximum=4.0, step=0.05)
vx_ratio = gr.Number(value=0.0, label="image crop x", minimum=-0.5, maximum=0.5, step=0.01)
vy_ratio = gr.Number(value=-0.125, label="image crop y", minimum=-0.5, maximum=0.5, step=0.01)
# Generate
gr.Markdown(load_description("assets/gradio/gradio_description_generate.md"))
with gr.Row():
process_button_generate = gr.Button("🚀 Generate", variant="primary")
# Examples
gr.Examples(
examples=data_examples_a2v,
inputs=[input_image,
input_audio,
animation_mode,
flag_do_crop_input,
cfg_scale,
],
outputs=[output_video],
cache_examples=False
)
# Binding Functions for Buttons
generation_func = gpu_wrapped_execute_a2v
process_button_generate.click(
fn=generation_func,
inputs=[
input_image,
input_audio,
flag_normalize_lip,
flag_relative_motion,
driving_multiplier,
animation_mode,
driving_option_input,
flag_do_crop_input,
scale,
vx_ratio,
vy_ratio,
flag_stitching_input,
flag_remap_input,
cfg_scale,
],
outputs=[
output_video,
],
show_progress=True
)
demo.launch(
server_port=args.server_port,
share=args.share,
server_name=args.server_name
)