Skip to content

Latest commit

 

History

History
182 lines (129 loc) · 9.36 KB

README.md

File metadata and controls

182 lines (129 loc) · 9.36 KB

Ho Kei Cheng, Masato Ishii, Akio Hayakawa, Takashi Shibuya, Alexander Schwing, Yuki Mitsufuji

University of Illinois Urbana-Champaign, Sony AI, and Sony Group Corporation

Note: This repository is still under construction. Single-example inference should work as expected. The training code will be added. Code is subject to non-backward-compatible changes.

Highlight

MMAudio generates synchronized audio given video and/or text inputs. Our key innovation is multimodal joint training which allows training on a wide range of audio-visual and audio-text datasets. Moreover, a synchronization module aligns the generated audio with the video frames.

Results

(All audio from our algorithm MMAudio)

Videos from Sora:

sora_v2_comp.mp4

Videos from Veo 2:

veo_results_lower_bitrate.mp4

Videos from MovieGen/Hunyuan Video/VGGSound:

results_concat.mp4

For more results, visit https://hkchengrex.com/MMAudio/video_main.html.

Update Logs

  • 2024-12-14: Removed the ffmpeg<7 requirement for the demos by replacing torio.io.StreamingMediaDecoder with pyav for reading frames. The read frames are also cached, so we are not reading the same frames again during reconstruction. This should speed things up and make installation less of a hassle.
  • 2024-12-13: Improved for-loop processing in CLIP/Sync feature extraction by introducing a batch size multiplier. We can approximately use 40x batch size for CLIP/Sync without using more memory, thereby speeding up processing. Removed VAE encoder during inference -- we don't need it.
  • 2024-12-11: Replaced torio.io.StreamingMediaDecoder with pyav for reading framerate when reconstructing the input video. torio.io.StreamingMediaDecoder does not work reliably in huggingface ZeroGPU's environment, and I suspect that it might not work in some other environments as well.

Installation

We have only tested this on Ubuntu.

Prerequisites

We recommend using a miniforge environment.

  • Python 3.9+
  • PyTorch 2.5.1+ and corresponding torchvision/torchaudio (pick your CUDA version https://pytorch.org/, pip install recommended)

1. Install prerequisite if not yet met:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 --upgrade

(Or any other CUDA versions that your GPUs/driver support)

2. Clone our repository:

git clone https://github.com/hkchengrex/MMAudio.git

3. Install with pip (install pytorch first before attempting this!):

cd MMAudio
pip install -e .

(If you encounter the File "setup.py" not found error, upgrade your pip with pip install --upgrade pip)

Pretrained models:

The models will be downloaded automatically when you run the demo script. MD5 checksums are provided in mmaudio/utils/download_utils.py. The models are also available at https://huggingface.co/hkchengrex/MMAudio/tree/main

Model Download link File size
Flow prediction network, small 16kHz mmaudio_small_16k.pth 601M
Flow prediction network, small 44.1kHz mmaudio_small_44k.pth 601M
Flow prediction network, medium 44.1kHz mmaudio_medium_44k.pth 2.4G
Flow prediction network, large 44.1kHz mmaudio_large_44k.pth 3.9G
Flow prediction network, large 44.1kHz, v2 (recommended) mmaudio_large_44k_v2.pth 3.9G
16kHz VAE v1-16.pth 655M
16kHz BigVGAN vocoder (from Make-An-Audio 2) best_netG.pt 429M
44.1kHz VAE v1-44.pth 1.2G
Synchformer visual encoder synchformer_state_dict.pth 907M

To run the model, you need four components: a flow prediction network, visual feature extractors (Synchformer and CLIP, CLIP will be downloaded automatically), a VAE, and a vocoder. VAEs and vocoders are specific to the sampling rate (16kHz or 44.1kHz) and not model sizes. The 44.1kHz vocoder will be downloaded automatically.

The expected directory structure (full):

MMAudio
├── ext_weights
│   ├── best_netG.pt
│   ├── synchformer_state_dict.pth
│   ├── v1-16.pth
│   └── v1-44.pth
├── weights
│   ├── mmaudio_small_16k.pth
│   ├── mmaudio_small_44k.pth
│   ├── mmaudio_medium_44k.pth
│   ├── mmaudio_large_44k.pth
│   └── mmaudio_large_44k_v2.pth
└── ...

The expected directory structure (minimal, for the recommended model only):

MMAudio
├── ext_weights
│   ├── synchformer_state_dict.pth
│   └── v1-44.pth
├── weights
│   └── mmaudio_large_44k_v2.pth
└── ...

Demo

By default, these scripts use the large_44k_v2 model. In our experiments, inference only takes around 6GB of GPU memory (in 16-bit mode) which should fit in most modern GPUs.

Command-line interface

With demo.py

python demo.py --duration=8 --video=<path to video> --prompt "your prompt" 

The output (audio in .flac format, and video in .mp4 format) will be saved in ./output. See the file for more options. Simply omit the --video option for text-to-audio synthesis. The default output (and training) duration is 8 seconds. Longer/shorter durations could also work, but a large deviation from the training duration may result in a lower quality.

Gradio interface

Supports video-to-audio and text-to-audio synthesis. Use port forwarding if necessary. Our default port is 7860 which you can change in gradio_demo.py.

python gradio_demo.py

Known limitations

  1. The model sometimes generates undesired unintelligible human speech-like sounds
  2. The model sometimes generates undesired background music
  3. The model struggles with unfamiliar concepts, e.g., it can generate "gunfires" but not "RPG firing".

We believe all of these three limitations can be addressed with more high-quality training data.

Training

Work in progress.

Evaluation

Work in progress.

Datasets

MMAudio was trained on several datasets, including AudioSet, Freesound, VGGSound, AudioCaps, and WavCaps. These datasets are subject to specific licenses, which can be accessed on their respective websites. We do not guarantee that the pre-trained models are suitable for commercial use. Please use them at your own risk.

Acknowledgement

Many thanks to: