forked from erwold/qwen2vl-flux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
154 lines (130 loc) · 6.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import argparse
import torch
from PIL import Image
import numpy as np
from model import FluxModel
def parse_args():
parser = argparse.ArgumentParser(description='Flux Image Generation Tool')
# Required arguments
parser.add_argument('--mode', type=str, required=True,
choices=['variation', 'img2img', 'inpaint', 'controlnet', 'controlnet-inpaint'],
help='Generation mode')
parser.add_argument('--input_image', type=str, required=True,
help='Path to the input image')
# Optional arguments
parser.add_argument('--prompt', type=str, default="",
help='Text prompt to guide the generation')
parser.add_argument('--reference_image', type=str, default=None,
help='Path to the reference image (for img2img/controlnet modes)')
parser.add_argument('--mask_image', type=str, default=None,
help='Path to the mask image (for inpainting modes)')
parser.add_argument('--output_dir', type=str, default='outputs',
help='Directory to save generated images')
parser.add_argument('--image_count', type=int, default=1,
help='Number of images to generate')
parser.add_argument('--aspect_ratio', type=str, default='1:1',
choices=['1:1', '16:9', '9:16', '2.4:1', '3:4', '4:3'],
help='Output image aspect ratio')
parser.add_argument('--steps', type=int, default=28,
help='Number of inference steps')
parser.add_argument('--guidance_scale', type=float, default=7.5,
help='Guidance scale for generation')
parser.add_argument('--denoise_strength', type=float, default=0.8,
help='Denoising strength for img2img/inpaint')
# Attention related arguments
parser.add_argument('--center_x', type=float, default=None,
help='X coordinate of attention center (0-1)')
parser.add_argument('--center_y', type=float, default=None,
help='Y coordinate of attention center (0-1)')
parser.add_argument('--radius', type=float, default=None,
help='Radius of attention circle (0-1)')
# ControlNet related arguments
parser.add_argument('--line_mode', action='store_true',
help='Enable line detection mode for ControlNet')
parser.add_argument('--depth_mode', action='store_true',
help='Enable depth mode for ControlNet')
parser.add_argument('--line_strength', type=float, default=0.4,
help='Strength of line guidance')
parser.add_argument('--depth_strength', type=float, default=0.2,
help='Strength of depth guidance')
# Device selection
parser.add_argument('--device', type=str, default='cuda',
choices=['cuda', 'cpu'],
help='Device to run the model on')
parser.add_argument('--turbo', action='store_true',
help='Enable turbo mode for faster inference')
return parser.parse_args()
def load_image(image_path):
"""Load and return a PIL Image."""
try:
return Image.open(image_path).convert('RGB')
except Exception as e:
raise ValueError(f"Error loading image {image_path}: {str(e)}")
def save_images(images, output_dir, prefix="generated"):
"""Save generated images with sequential numbering."""
import os
os.makedirs(output_dir, exist_ok=True)
for i, image in enumerate(images):
output_path = os.path.join(output_dir, f"{prefix}_{i+1}.png")
image.save(output_path)
print(f"Saved image to {output_path}")
def get_required_features(args):
"""Determine which model features are required based on the arguments."""
features = []
if args.mode in ['controlnet', 'controlnet-inpaint']:
features.append('controlnet')
if args.depth_mode:
features.append('depth')
if args.line_mode:
features.append('line')
if args.mode in ['inpaint', 'controlnet-inpaint']:
features.append('sam') # If you're using SAM for mask generation
return features
def main():
args = parse_args()
# Check CUDA availability if requested
if args.device == 'cuda' and not torch.cuda.is_available():
print("CUDA requested but not available. Falling back to CPU.")
args.device = 'cpu'
# Determine required features based on mode and arguments
required_features = get_required_features(args)
# Initialize model with only required features
print(f"Initializing model on {args.device} with features: {required_features}")
model = FluxModel(
is_turbo=args.turbo,
device=args.device,
required_features=required_features
)
# Load input images
input_image = load_image(args.input_image)
reference_image = load_image(args.reference_image) if args.reference_image else None
mask_image = load_image(args.mask_image) if args.mask_image else None
# Validate inputs based on mode
if args.mode in ['inpaint', 'controlnet-inpaint'] and mask_image is None:
raise ValueError(f"{args.mode} mode requires a mask image")
# Generate images
print(f"Generating {args.image_count} images in {args.mode} mode...")
generated_images = model.generate(
input_image_a=input_image,
input_image_b=reference_image,
prompt=args.prompt,
mask_image=mask_image,
mode=args.mode,
imageCount=args.image_count,
aspect_ratio=args.aspect_ratio,
num_inference_steps=args.steps,
guidance_scale=args.guidance_scale,
denoise_strength=args.denoise_strength,
center_x=args.center_x,
center_y=args.center_y,
radius=args.radius,
line_mode=args.line_mode,
depth_mode=args.depth_mode,
line_strength=args.line_strength,
depth_strength=args.depth_strength
)
# Save generated images
save_images(generated_images, args.output_dir)
print("Generation completed successfully!")
if __name__ == "__main__":
main()