forked from erwold/qwen2vl-flux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
635 lines (539 loc) · 27.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
import torch
from torch import nn
from PIL import Image
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
from flux.pipeline_flux_img2img import FluxImg2ImgPipeline
from flux.pipeline_flux_inpaint import FluxInpaintPipeline
from flux.pipeline_flux_controlnet import FluxControlNetPipeline, FluxControlNetModel
from flux.pipeline_flux_controlnet_img2img import FluxControlNetImg2ImgPipeline
from flux.controlnet_flux import FluxMultiControlNetModel
from flux.pipeline_flux_controlnet_inpainting import FluxControlNetInpaintPipeline
from controlnet_aux import AnylineDetector
from depth_anything_v2.dpt import DepthAnythingV2
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
import os
import cv2
import numpy as np
import math
from optimum.quanto import freeze, qfloat8, quantize
def get_model_path(model_name):
"""Get the full path for a model based on the checkpoints directory."""
base_dir = os.getenv('CHECKPOINT_DIR', 'checkpoints') # Allow environment variable override
return os.path.join(base_dir, model_name)
# Model paths configuration
MODEL_PATHS = {
'flux': get_model_path('flux'),
'qwen2vl': get_model_path('qwen2-vl'),
'controlnet': get_model_path('controlnet'),
'depth_anything': {
'path': get_model_path('depth-anything-v2'),
'weights': 'depth_anything_v2_vitl.pth'
},
'anyline': {
'path': get_model_path('anyline'),
'weights': 'MTEED.pth'
},
'sam2': {
'path': get_model_path('segment-anything-2'),
'weights': 'sam2_hiera_large.pt',
'config': 'sam2_hiera_l.yaml'
}
}
ASPECT_RATIOS = {
"1:1": (1024, 1024),
"16:9": (1344, 768),
"9:16": (768, 1344),
"2.4:1": (1536, 640),
"3:4": (896, 1152),
"4:3": (1152, 896),
}
class Qwen2Connector(nn.Module):
def __init__(self, input_dim=3584, output_dim=4096):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
class FluxModel:
def __init__(self, is_turbo=False, device="cuda", required_features=None):
"""
Initialize FluxModel with specified features
Args:
is_turbo: Enable turbo mode for faster inference
device: Device to run the model on
required_features: List of required features ['controlnet', 'depth', 'line', 'sam']
"""
self.device = torch.device(device)
self.dtype = torch.bfloat16
if required_features is None:
required_features = []
# Initialize base models (always required)
self._init_base_models()
# Initialize optional models based on requirements
if 'controlnet' in required_features or any(f in required_features for f in ['depth', 'line']):
self._init_controlnet()
if 'depth' in required_features:
self._init_depth_model()
if 'line' in required_features:
self._init_line_detector()
if 'sam' in required_features:
self._init_sam()
if is_turbo:
self._enable_turbo()
def _init_base_models(self):
"""Initialize the core models that are always needed"""
# Qwen2VL and connector initialization
self.qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
MODEL_PATHS['qwen2vl'],
torch_dtype=self.dtype
)
self.qwen2vl.requires_grad_(False).to(self.device)
self.connector = Qwen2Connector(input_dim=3584, output_dim=4096)
connector_path = os.path.join(MODEL_PATHS['qwen2vl'], "connector.pt")
if os.path.exists(connector_path):
connector_state_dict = torch.load(connector_path, map_location=self.device, weights_only=True)
connector_state_dict = {k.replace('module.', ''): v for k, v in connector_state_dict.items()}
self.connector.load_state_dict(connector_state_dict)
self.connector.to(self.dtype).to(self.device)
# Text encoders initialization
self.tokenizer = CLIPTokenizer.from_pretrained(MODEL_PATHS['flux'], subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(MODEL_PATHS['flux'], subfolder="text_encoder")
self.text_encoder_two = T5EncoderModel.from_pretrained(MODEL_PATHS['flux'], subfolder="text_encoder_2")
self.tokenizer_two = T5TokenizerFast.from_pretrained(MODEL_PATHS['flux'], subfolder="tokenizer_2")
self.text_encoder.requires_grad_(False).to(self.dtype).to(self.device)
self.text_encoder_two.requires_grad_(False).to(self.dtype).to(self.device)
# T5 context embedder
self.t5_context_embedder = nn.Linear(4096, 3072)
t5_embedder_path = os.path.join(MODEL_PATHS['qwen2vl'], "t5_embedder.pt")
t5_embedder_state_dict = torch.load(t5_embedder_path, map_location=self.device, weights_only=True)
self.t5_context_embedder.load_state_dict(t5_embedder_state_dict)
self.t5_context_embedder.to(self.dtype).to(self.device)
# Basic components
self.noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(MODEL_PATHS['flux'], subfolder="scheduler", shift=1)
self.vae = AutoencoderKL.from_pretrained(MODEL_PATHS['flux'], subfolder="vae")
self.transformer = FluxTransformer2DModel.from_pretrained(MODEL_PATHS['flux'], subfolder="transformer")
self.vae.requires_grad_(False).to(self.dtype).to(self.device)
self.transformer.requires_grad_(False).to(self.dtype).to(self.device)
def _init_controlnet(self):
"""Initialize ControlNet model"""
self.controlnet_union = FluxControlNetModel.from_pretrained(
MODEL_PATHS['controlnet'],
torch_dtype=torch.bfloat16
)
self.controlnet_union.requires_grad_(False).to(self.device)
self.controlnet = FluxMultiControlNetModel([self.controlnet_union])
def _init_depth_model(self):
"""Initialize Depth Anything V2 model"""
self.depth_model = DepthAnythingV2(
encoder='vitl',
features=256,
out_channels=[256, 512, 1024, 1024]
)
depth_weights = os.path.join(MODEL_PATHS['depth_anything']['path'],
MODEL_PATHS['depth_anything']['weights'])
self.depth_model.load_state_dict(torch.load(depth_weights, map_location=self.device))
self.depth_model.requires_grad_(False).to(self.device)
def _init_line_detector(self):
"""Initialize line detection model"""
self.anyline = AnylineDetector.from_pretrained(
MODEL_PATHS['anyline']['path'],
filename=MODEL_PATHS['anyline']['weights']
)
self.anyline.to(self.device)
def _init_sam(self):
"""Initialize SAM2 model"""
sam2_checkpoint = os.path.join(MODEL_PATHS['sam2']['path'],
MODEL_PATHS['sam2']['weights'])
model_cfg = os.path.join(MODEL_PATHS['sam2']['path'],
MODEL_PATHS['sam2']['config'])
self.sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=self.device)
self.sam2_predictor = SAM2ImagePredictor(self.sam2_model)
def _enable_turbo(self):
"""Enable turbo mode for faster inference"""
quantize(
self.transformer,
weights=qfloat8,
exclude=[
"*.norm", "*.norm1", "*.norm2", "*.norm2_context",
"proj_out", "x_embedder", "norm_out", "context_embedder",
],
)
freeze(self.transformer)
def generate_mask(self, image, input_points, input_labels):
"""
使用SAM2生成分割mask
Args:
image: PIL Image或numpy数组
input_points: numpy数组,形状为(N, 2),包含点的坐标
input_labels: numpy数组,形状为(N,),1表示前景点,0表示背景点
Returns:
PIL Image: 最高分数的mask
"""
try:
# 确保图像是numpy数组
if isinstance(image, Image.Image):
image_array = np.array(image)
else:
image_array = image
# 设置图像
self.sam2_predictor.set_image(image_array)
# 进行预测
with torch.inference_mode():
masks, scores, logits = self.sam2_predictor.predict(
point_coords=input_points,
point_labels=input_labels,
multimask_output=True,
)
# 返回得分最高的mask
best_mask_idx = scores.argmax()
mask = masks[best_mask_idx]
mask_image = Image.fromarray((mask * 255).astype(np.uint8))
return mask_image
except Exception as e:
print(f"Mask generation failed: {str(e)}")
raise
def recover_2d_shape(self, image_hidden_state, grid_thw):
batch_size, num_tokens, hidden_dim = image_hidden_state.shape
_, h, w = grid_thw
h_out = h // 2
w_out = w // 2
# 重塑为 (batch_size, height, width, hidden_dim)
reshaped = image_hidden_state.view(batch_size, h_out, w_out, hidden_dim)
return reshaped
def generate_attention_matrix(self, center_x, center_y, radius, image_shape):
height, width = image_shape
y, x = np.ogrid[:height, :width]
center_y, center_x = center_y * height, center_x * width
distances = np.sqrt((x - center_x)**2 + (y - center_y)**2)
attention = np.clip(1 - distances / (radius * min(height, width)), 0, 1)
return attention
def apply_attention(self, image_hidden_state, image_grid_thw, center_x, center_y, radius):
qwen2_2d_image_embedding = self.recover_2d_shape(image_hidden_state, tuple(image_grid_thw.tolist()[0]))
attention_matrix = self.generate_attention_matrix(
center_x, center_y, radius,
(qwen2_2d_image_embedding.size(1), qwen2_2d_image_embedding.size(2))
)
attention_tensor = torch.from_numpy(attention_matrix).to(self.dtype).unsqueeze(0).unsqueeze(-1)
qwen2_2d_image_embedding = qwen2_2d_image_embedding * attention_tensor.to(self.device)
return qwen2_2d_image_embedding.view(1, -1, qwen2_2d_image_embedding.size(3))
def compute_text_embeddings(self, prompt):
with torch.no_grad():
text_inputs = self.tokenizer(prompt, padding="max_length", max_length=77, truncation=True, return_tensors="pt")
text_input_ids = text_inputs.input_ids.to(self.device)
prompt_embeds = self.text_encoder(text_input_ids, output_hidden_states=False)
pooled_prompt_embeds = prompt_embeds.pooler_output
return pooled_prompt_embeds.to(self.dtype)
def compute_t5_text_embeddings(
self,
max_sequence_length=256,
prompt=None,
num_images_per_prompt=1,
device=None,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = self.tokenizer_two(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = self.text_encoder_two(text_input_ids.to(device))[0]
dtype = self.text_encoder_two.dtype
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds
def process_image(self, image):
message = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Describe this image."},
]
}
]
text = self.qwen2vl_processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
with torch.no_grad():
inputs = self.qwen2vl_processor(text=[text], images=[image], padding=True, return_tensors="pt").to(self.device)
output_hidden_state, image_token_mask, image_grid_thw = self.qwen2vl(**inputs)
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
return image_hidden_state, image_grid_thw
def resize_image(self, img, max_pixels=1050000):
# 确保输入是 PIL Image
if not isinstance(img, Image.Image):
img = Image.fromarray(img)
width, height = img.size
num_pixels = width * height
if num_pixels > max_pixels:
scale = math.sqrt(max_pixels / num_pixels)
new_width = int(width * scale)
new_height = int(height * scale)
# 调整宽度和高度,使其能被8整除
new_width = new_width - (new_width % 8)
new_height = new_height - (new_height % 8)
img = img.resize((new_width, new_height), Image.LANCZOS)
else:
# 如果图片不需要缩小,仍然需要确保尺寸能被8整除
new_width = width - (width % 8)
new_height = height - (height % 8)
if new_width != width or new_height != height:
img = img.resize((new_width, new_height), Image.LANCZOS)
return img
def generate_depth_map(self, image):
"""Generate depth map using Depth Anything V2"""
# Convert PIL to numpy array
image_np = np.array(image)
# Convert RGB to BGR for cv2
image_bgr = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
# Generate depth map
with torch.no_grad():
depth = self.depth_model.infer_image(image_bgr)
# Normalize depth to 0-1 range
depth_norm = (depth - depth.min()) / (depth.max() - depth.min())
# Convert to RGB image
depth_rgb = (depth_norm * 255).astype(np.uint8)
depth_rgb = cv2.cvtColor(depth_rgb, cv2.COLOR_GRAY2RGB)
return Image.fromarray(depth_rgb)
def generate(self, input_image_a, input_image_b=None, prompt="", guidance_scale=3.5, num_inference_steps=28,
aspect_ratio="1:1", center_x=None, center_y=None, radius=None, mode="variation",
denoise_strength=0.8, mask_image=None, imageCount=2,
line_mode=True, depth_mode=True, line_strength=0.4, depth_strength=0.2):
batch_size = imageCount
if aspect_ratio not in ASPECT_RATIOS:
raise ValueError(f"Invalid aspect ratio. Choose from {list(ASPECT_RATIOS.keys())}")
width, height = ASPECT_RATIOS[aspect_ratio]
pooled_prompt_embeds = self.compute_text_embeddings(prompt="")
t5_prompt_embeds = None
if prompt != "":
#self.text_encoder_two = T5EncoderModel.from_pretrained("/src/models/flux", subfolder="text_encoder_2")
#self.tokenizer_two = T5TokenizerFast.from_pretrained("/src/models/flux", subfolder="tokenizer_2")
#self.text_encoder_two.requires_grad_(False).to(self.dtype).to(self.device)
self.qwen2vl_processor = AutoProcessor.from_pretrained("/src/models/qwen2-vl", min_pixels=256*28*28, max_pixels=256*28*28)
t5_prompt_embeds = self.compute_t5_text_embeddings(prompt=prompt, device=self.device)
t5_prompt_embeds = self.t5_context_embedder(t5_prompt_embeds)
else:
self.qwen2vl_processor = AutoProcessor.from_pretrained("/src/models/qwen2-vl", min_pixels=512*28*28, max_pixels=512*28*28)
qwen2_hidden_state_a, image_grid_thw_a = self.process_image(input_image_a)
# 只有当所有注意力参数都被提供时,才应用注意力机制
if mode == "variation":
if center_x is not None and center_y is not None and radius is not None:
qwen2_hidden_state_a = self.apply_attention(qwen2_hidden_state_a, image_grid_thw_a, center_x, center_y, radius)
qwen2_hidden_state_a = self.connector(qwen2_hidden_state_a)
if mode == "img2img" or mode == "inpaint":
if input_image_b:
qwen2_hidden_state_b, image_grid_thw_b = self.process_image(input_image_b)
if center_x is not None and center_y is not None and radius is not None:
qwen2_hidden_state_b = self.apply_attention(qwen2_hidden_state_b, image_grid_thw_b, center_x, center_y, radius)
qwen2_hidden_state_b = self.connector(qwen2_hidden_state_b)
else:
qwen2_hidden_state_a = self.connector(qwen2_hidden_state_a)
qwen2_hidden_state_b = None
if mode == "controlnet" or mode == "controlnet-inpaint":
qwen2_hidden_state_b = None
if input_image_b:
qwen2_hidden_state_b, image_grid_thw_b = self.process_image(input_image_b)
if center_x is not None and center_y is not None and radius is not None:
qwen2_hidden_state_b = self.apply_attention(qwen2_hidden_state_b, image_grid_thw_b, center_x, center_y, radius)
qwen2_hidden_state_b = self.connector(qwen2_hidden_state_b)
qwen2_hidden_state_a = self.connector(qwen2_hidden_state_a)
#############################
# IMAGE GENERATION
#############################
if mode == "variation":
# Initialize different pipelines
pipeline = FluxPipeline(
transformer=self.transformer,
scheduler=self.noise_scheduler,
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
)
gen_images = pipeline(
prompt_embeds=qwen2_hidden_state_a.repeat(batch_size, 1, 1),
t5_prompt_embeds=t5_prompt_embeds.repeat(batch_size, 1, 1) if t5_prompt_embeds is not None else None,
pooled_prompt_embeds=pooled_prompt_embeds,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
#############################
# IMAGE-TO-IMAGE
#############################
elif mode == "img2img":
input_image_a = self.resize_image(input_image_a)
width, height = input_image_a.size
img2img_pipeline = FluxImg2ImgPipeline(
transformer=self.transformer,
scheduler=self.noise_scheduler,
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
)
gen_images = img2img_pipeline(
image=input_image_a,
strength=denoise_strength,
prompt_embeds=qwen2_hidden_state_b.repeat(batch_size, 1, 1) if qwen2_hidden_state_b is not None else qwen2_hidden_state_a.repeat(batch_size, 1, 1),
t5_prompt_embeds=t5_prompt_embeds.repeat(batch_size, 1, 1) if t5_prompt_embeds is not None else None,
pooled_prompt_embeds=pooled_prompt_embeds,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
#############################
# INPAINTING
#############################
elif mode == "inpaint":
if mask_image is None:
raise ValueError("Mask image is required for inpainting mode")
input_image_a = self.resize_image(input_image_a)
mask_image = self.resize_image(mask_image)
width, height = input_image_a.size
inpaint_pipeline = FluxInpaintPipeline(
transformer=self.transformer,
scheduler=self.noise_scheduler,
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
)
gen_images = inpaint_pipeline(
image=input_image_a,
mask_image=mask_image,
strength=denoise_strength,
prompt_embeds=qwen2_hidden_state_b.repeat(batch_size, 1, 1) if qwen2_hidden_state_b is not None else qwen2_hidden_state_a.repeat(batch_size, 1, 1),
t5_prompt_embeds=t5_prompt_embeds.repeat(batch_size, 1, 1) if t5_prompt_embeds is not None else None,
pooled_prompt_embeds=pooled_prompt_embeds,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
#############################
# CONTROLNET
#############################
elif mode == "controlnet":
input_image_a = self.resize_image(input_image_a)
width, height = input_image_a.size
controlnet_pipeline = FluxControlNetImg2ImgPipeline(
transformer=self.transformer,
scheduler=self.noise_scheduler,
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
controlnet=self.controlnet,
)
# 准备控制图像和模式列表
control_images = []
control_modes = []
conditioning_scales = []
# 根据用户选择添加控制模式
if depth_mode:
control_image_depth = self.generate_depth_map(input_image_a)
control_images.append(control_image_depth)
control_modes.append(2) # depth mode
conditioning_scales.append(depth_strength)
if line_mode:
control_image_canny = self.anyline(input_image_a, detect_resolution=1280)
control_images.append(control_image_canny)
control_modes.append(0) # line mode
conditioning_scales.append(line_strength)
# 如果没有启用任何模式,默认使用line+depth模式
if not line_mode and not depth_mode:
control_image_depth = self.generate_depth_map(input_image_a)
control_image_canny = self.anyline(input_image_a, detect_resolution=1280)
control_images = [control_image_depth, control_image_canny]
control_modes = [2, 0]
conditioning_scales = [0.2, 0.4]
if qwen2_hidden_state_b is not None:
qwen2_hidden_state_b = qwen2_hidden_state_b[:, :qwen2_hidden_state_a.shape[1], :]
qwen2_hidden_state_a = qwen2_hidden_state_a[:, :qwen2_hidden_state_b.shape[1], :]
gen_images = controlnet_pipeline(
image=input_image_a,
strength=denoise_strength,
control_image=control_images,
control_mode=control_modes,
controlnet_conditioning_scale=conditioning_scales,
prompt_embeds=qwen2_hidden_state_b.repeat(batch_size, 1, 1) if qwen2_hidden_state_b is not None else qwen2_hidden_state_a.repeat(batch_size, 1, 1),
t5_prompt_embeds=t5_prompt_embeds.repeat(batch_size, 1, 1) if t5_prompt_embeds is not None else None,
prompt_embeds_control=qwen2_hidden_state_a.repeat(batch_size, 1, 1),
pooled_prompt_embeds=pooled_prompt_embeds,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
#############################
# CONTROLNET INPAINT
#############################
elif mode == "controlnet-inpaint":
input_image_a = self.resize_image(input_image_a)
mask_image = self.resize_image(mask_image)
width, height = input_image_a.size
controlnet_pipeline = FluxControlNetInpaintPipeline(
transformer=self.transformer,
scheduler=self.noise_scheduler,
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
controlnet=self.controlnet,
)
# 准备控制图像和模式列表
control_images = []
control_modes = []
conditioning_scales = []
# 根据用户选择添加控制模式
if depth_mode:
control_image_depth = self.generate_depth_map(input_image_a)
control_images.append(control_image_depth)
control_modes.append(2) # depth mode
conditioning_scales.append(depth_strength)
if line_mode:
control_image_canny = self.anyline(input_image_a, detect_resolution=1280)
control_images.append(control_image_canny)
control_modes.append(0) # line mode
conditioning_scales.append(line_strength)
# 如果没有启用任何模式,默认使用line+depth模式
if not line_mode and not depth_mode:
control_image_depth = self.generate_depth_map(input_image_a)
control_image_canny = self.anyline(input_image_a, detect_resolution=1280)
control_images = [control_image_depth, control_image_canny]
control_modes = [2, 0]
conditioning_scales = [0.2, 0.4]
if qwen2_hidden_state_b is not None:
qwen2_hidden_state_b = qwen2_hidden_state_b[:, :qwen2_hidden_state_a.shape[1], :]
qwen2_hidden_state_a = qwen2_hidden_state_a[:, :qwen2_hidden_state_b.shape[1], :]
gen_images = controlnet_pipeline(
image=input_image_a,
mask_image=mask_image,
control_image=control_images,
control_mode=control_modes,
controlnet_conditioning_scale=conditioning_scales,
strength=denoise_strength,
prompt_embeds=qwen2_hidden_state_b.repeat(batch_size, 1, 1) if qwen2_hidden_state_b is not None else qwen2_hidden_state_a.repeat(batch_size, 1, 1),
t5_prompt_embeds=t5_prompt_embeds.repeat(batch_size, 1, 1) if t5_prompt_embeds is not None else None,
prompt_embeds_control=qwen2_hidden_state_a.repeat(batch_size, 1, 1),
pooled_prompt_embeds=pooled_prompt_embeds,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
else:
raise ValueError(f"Invalid mode: {mode}")
return gen_images