forked from dftbplus/skpar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
66 lines (54 loc) · 1.96 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/usr/bin/env python3
# Copyright (C) 2013 - 2017 Stanislav Markov
# Please see the accompanying LICENSE file for further information.
from setuptools import setup
from os.path import join
import os
import sys
if sys.version_info < (3, 0, 0, 'final', 0):
raise SystemExit('Python 3 is required!')
name = 'skpar'
short_description = ('Optimisation of Slater-Koster files (.skf) '+
'for density functional-based tight binding (DFTB)')
long_description = open('README.txt').read()
version = '0.2.4'
package_dir = {'skpar': 'skpar',}
packages = []
for dirname, dirnames, filenames in os.walk('skpar'):
if '__init__.py' in filenames:
packages.append(dirname.replace('/', '.'))
package_data = {}
scripts=['bin/skpar', 'bin/dftbutils', 'bin/check_dftblog',
'bin/skpar_splinerepfit', 'bin/skpar_addrepulsive']
## try to cater for windows
if 'sdist' in sys.argv or os.name in ['ce', 'nt']:
for s in scripts[:]:
print ("Making .bat files for Windows")
scripts.append(s + '.bat')
# data_files needs (directory, files-in-this-directory) tuples
data_files = []
setup(name=name,
version=version,
description=short_description,
long_description=long_description,
url='https://github.com/smarkov/skpar',
download_url = 'https://github.com/smarkov/skpar/archive/{}.tar.gz'.format(version),
author='Stanislav Markov, The University of Hong Kong',
author_email='[email protected]',
keywords=['dftb', 'slater-koster integrals', 'dftb+', 'lodestar', 'particle swarm optimisation', 'optimisation', 'pso', 'skpar'],
license='MIT',
platforms=['any'],
packages=packages,
package_dir=package_dir,
package_data=package_data,
scripts=scripts,
data_files=data_files,
install_requires = [
'numpy',
'scipy',
'deap',
'pyyaml',
'matplotlib'
],
classifiers=[],
)