论文信息:
Robust Scene Text Recognition with Automatic Rectification Baoguang Shi, Xinggang Wang, Pengyuan Lyu, Cong Yao, Xiang Bai∗ CVPR, 2016
使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下:
模型 | 骨干网络 | 配置文件 | Avg Accuracy | 下载链接 |
---|---|---|---|---|
RARE | Resnet34_vd | configs/rec/rec_r34_vd_tps_bilstm_att.yml | 83.6% | 训练模型 |
RARE | MobileNetV3 | configs/rec/rec_mv3_tps_bilstm_att.yml | 82.5% | 训练模型 |
请先参考《运行环境准备》配置PaddleOCR运行环境,参考《项目克隆》克隆项目代码。
请参考文本识别训练教程。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要更换配置文件即可。以基于Resnet34_vd骨干网络为例:
#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml
#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml
# GPU评估, Global.pretrained_model为待评估模型
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
python3 tools/infer_rec.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
首先将RARE文本识别训练过程中保存的模型,转换成inference model。以基于Resnet34_vd骨干网络,在MJSynth和SynthText两个文字识别数据集训练得到的模型为例( 模型下载地址 ),可以使用如下命令进行转换:
python3 tools/export_model.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml -o Global.pretrained_model=./rec_r34_vd_tps_bilstm_att_v2.0_train/best_accuracy Global.save_inference_dir=./inference/rec_rare
RARE文本识别模型推理,可以执行如下命令:
python3 tools/infer/predict_rec.py --image_dir="doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_rare/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
推理结果如下所示:
Predicts of doc/imgs_words/en/word_1.png:('joint ', 0.9999969601631165)
暂不支持
暂不支持
RARE模型还支持以下推理部署方式:
- Paddle2ONNX推理:准备好推理模型后,参考paddle2onnx教程操作。
@inproceedings{2016Robust,
title={Robust Scene Text Recognition with Automatic Rectification},
author={ Shi, B. and Wang, X. and Lyu, P. and Cong, Y. and Xiang, B. },
booktitle={2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2016},
}