-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcycleGAN_dependence.py
269 lines (206 loc) · 7.96 KB
/
cycleGAN_dependence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"""We reused lots of code from https://github.com/eriklindernoren/PyTorch-GAN/tree/master"""
import torch.nn as nn
import torch.nn.functional as F
import torch
import glob
import random
import os
from torch.utils.data import Dataset
from PIL import Image
import torchvision.transforms as transforms
import random
import time
import datetime
import sys
from torch.autograd import Variable
import torch
import numpy as np
from torchvision.utils import save_image
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
if hasattr(m, "bias") and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
##############################
# RESNET
##############################
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
self.block = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
nn.InstanceNorm2d(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
nn.InstanceNorm2d(in_features),
)
def forward(self, x):
return x + self.block(x)
class GeneratorResNet(nn.Module):
def __init__(self, input_shape, num_residual_blocks):
super(GeneratorResNet, self).__init__()
channels = input_shape[0]
out_features = 64
# Initial convolution block
self.l_initial = nn.Sequential(
nn.ReflectionPad2d(4),
nn.Conv2d(channels, out_features, kernel_size= (7,7)),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True),
)
in_features = out_features
# Downsampling
out_features *= 2
self.ds_1 = nn.Sequential(
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True),
)
in_features = out_features
out_features *= 2
self.ds_2 = nn.Sequential(
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True),
)
in_features = out_features
# Residual blocks
self.re_1 = ResidualBlock(out_features)
self.re_2 = ResidualBlock(out_features)
self.re_3 = ResidualBlock(out_features)
self.re_4 = ResidualBlock(out_features)
# Upsampling
out_features //= 2
self.us_1 = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.Conv2d(in_features, out_features, 3, stride=1, padding=1),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True),
)
in_features = out_features
out_features //= 2
self.us_2 = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.Conv2d(in_features, out_features, 3, stride=1, padding=1),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True),
)
in_features = out_features
# Output layer
self.out = nn.Sequential(
nn.ReflectionPad2d(channels),
nn.Conv2d(out_features, channels, 7),
nn.Tanh()
)
def forward(self, x):
x = torch.unsqueeze(x, 1)
#print(x.shape)
x = self.l_initial(x)
#print(x.shape)
x = self.ds_1(x)
#print(x.shape)
x = self.ds_2(x)
#print(x.shape)
x = self.re_1(x)
#print(x.shape)
x = self.re_2(x)
#print(x.shape)
x = self.re_3(x)
#print(x.shape)
x = self.re_4(x)
#print(x.shape)
x = self.us_1(x)
#print(x.shape)
x = self.us_2(x)
#print(x.shape)
x = self.out(x)
#print(x.shape)
x = x.squeeze(0)
return x
##############################
# Discriminator
##############################
class Discriminator(nn.Module):
def __init__(self, input_shape):
super(Discriminator, self).__init__()
channels, height, width = input_shape
# Calculate output shape of image discriminator (PatchGAN)
self.output_shape = (1, height // 2 ** 4, width // 2 ** 4)
def discriminator_block(in_filters, out_filters, normalize=True):
"""Returns downsampling layers of each discriminator block"""
layers = [nn.Conv2d(in_filters, out_filters, 4, stride=2, padding=1)]
if normalize:
layers.append(nn.InstanceNorm2d(out_filters))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*discriminator_block(channels, 64, normalize=False),
*discriminator_block(64, 128),
*discriminator_block(128, 256),
*discriminator_block(256, 512),
nn.ZeroPad2d((1, 0, 1, 0)),
nn.Conv2d(512, 1, 4, padding=1)
)
def forward(self, img):
img = torch.unsqueeze(img, 1)
return self.model(img)
def to_rgb(image):
rgb_image = Image.new("RGB", image.size)
rgb_image.paste(image)
return rgb_image
class ImageDataset(Dataset):
def __init__(self, root, transforms_=None, unaligned=False, mode="train"):
self.transform = transforms.Compose(transforms_)
self.unaligned = unaligned
self.files_A = sorted(glob.glob(os.path.join(root, "%s/A" % mode) + "/*.*"))
self.files_B = sorted(glob.glob(os.path.join(root, "%s/B" % mode) + "/*.*"))
def __getitem__(self, index):
image_A = Image.open(self.files_A[index % len(self.files_A)])
if self.unaligned:
image_B = Image.open(self.files_B[random.randint(0, len(self.files_B) - 1)])
else:
image_B = Image.open(self.files_B[index % len(self.files_B)])
# Convert grayscale images to rgb
if image_A.mode != "RGB":
image_A = to_rgb(image_A)
if image_B.mode != "RGB":
image_B = to_rgb(image_B)
item_A = self.transform(image_A)
item_B = self.transform(image_B)
return {"A": item_A, "B": item_B}
def __len__(self):
return max(len(self.files_A), len(self.files_B))
class ReplayBuffer:
def __init__(self, max_size=50):
assert max_size > 0, "Empty buffer or trying to create a black hole. Be careful."
self.max_size = max_size
self.data = []
def push_and_pop(self, data):
to_return = []
for element in data.data:
element = torch.unsqueeze(element, 0)
if len(self.data) < self.max_size:
self.data.append(element)
to_return.append(element)
else:
if random.uniform(0, 1) > 0.5:
i = random.randint(0, self.max_size - 1)
to_return.append(self.data[i].clone())
self.data[i] = element
else:
to_return.append(element)
return Variable(torch.cat(to_return))
class LambdaLR:
def __init__(self, n_epochs, offset, decay_start_epoch):
assert (n_epochs - decay_start_epoch) > 0, "Decay must start before the training session ends!"
self.n_epochs = n_epochs
self.offset = offset
self.decay_start_epoch = decay_start_epoch
def step(self, epoch):
return 1.0 - max(0, epoch + self.offset - self.decay_start_epoch) / (self.n_epochs - self.decay_start_epoch)