- Introduction
- Fooocus capability related interfaces
- Fooocus API task related interfaces
- webhook
- public requests body
Fooocus API are provided more than a dozen REST interfaces now, I roughly divide it into two categories, the first is the ability to call Fooocus, such as generating images, refreshing models, and so on, and the second is related to Fooocus API itself, mainly related to task queries. I will try to illustrate their role and usage and provide examples in the following content.
Almost all interface parameters have default values, which means you only need to send the parameters you are interested in. The complete parameters and default values can be viewed in the table.
Corresponding to the function of text to image in Fooocus
base info:
EndPoint: /v1/generation/text-to-image
Method: Post
DataType: json
requests params:
Name | Type | Description |
---|---|---|
prompt | string | prompt, default to empty string |
negative_prompt | string | negative_prompt |
style_selections | List[str] | list of style, must be supported style, you can get all supported style here |
performance_selection | Enum | performance_selection, must be one of Speed , Quality , Extreme Speed default to Speed |
aspect_ratios_selection | str | resolution, default to 1152*896 |
image_number | int | the num of image to generate, default to 1 , max num is 32, note: Not a parallel interface |
image_seed | int | seed, default to -1, meant random |
sharpness | float | sharpness, default to 2.0 , 0-30 |
guidance_scale | float | guidance scale, default to 4.0 , 1-30 |
base_model_name | str | base model, default to juggernautXL_version6Rundiffusion.safetensors |
refiner_model_name | str | refiner model, default to None |
refiner_switch | float | refiner switch, default to 0.5 |
loras | List[Lora] | lora list, include conf, lora: Lora |
advanced_params | AdvancedParams | Advanced params, AdvancedParams |
require_base64 | bool | require base64, default to False |
async_process | bool | is async, default to False |
webhook_url | str | after async task completed, address for callback, default to None, refer to webhook |
response params:
Most response have the same structure, but different parts will be specifically explained
This interface returns a universal response structure, refer to response
request example:
host = "http://127.0.0.1:8888"
def text2img(params: dict) -> dict:
"""
text to image
"""
result = requests.post(url=f"{host}/v1/generation/text-to-image",
data=json.dumps(params),
headers={"Content-Type": "application/json"})
return result.json()
result =text2img({
"prompt": "1girl sitting on the ground",
"async_process": True})
print(result)
Corresponding to the function of Upscale or Variation in Fooocus
the requests body for this interface based on text-to-image, so I will only list the difference with text-to-image
In addition, the interface provides two versions, and there is no functional difference between the two versions, mainly due to slight differences in request methods
base info:
EndPoint_V1: /v1/generation/image-upscale-vary
EndPoint_V2: /v2/generation/image-upscale-vary
Method: Post
DataType: form|json
requests params
Name | Type | Description |
---|---|---|
input_image | string($binary) | binary image |
uov_method | Enum | 'Vary (Subtle)','Vary (Strong)','Upscale (1.5x)','Upscale (2x)','Upscale (Fast 2x)','Upscale (Custom)' |
upscale_value | float | default to None , 1.0-5.0, magnification, only for uov_method is 'Upscale (Custom)' |
style_selections | List[str] | list Fooocus style seg with comma |
loras | str(List[Lora]) | list for lora, with configure, lora: Lora, example: [{"model_name": "sd_xl_offset_example-lora_1.0.safetensors", "weight": 0.5}] |
advanced_params | str(AdvancedParams) | AdvancedParams, AdvancedParams: AdvancedParams, send with str, None is available |
response params:
This interface returns a universal response structure, refer to response
requests example:
# headers should not contain {"Content-Type": "application/json"}
host = "http://127.0.0.1:8888"
image = open("./examples/imgs/bear.jpg", "rb").read()
def upscale_vary(image, params: dict) -> dict:
"""
Upscale or Vary
"""
response = requests.post(url=f"{host}/v1/generation/image-upscale-vary",
data=params,
files={"input_image": image})
return response.json()
result =upscale_vary(image=image,
params={
"uov_method": "Upscale (2x)",
"async_process": True
})
print(json.dumps(result, indent=4, ensure_ascii=False))
requests params
Name | Type | Description |
---|---|---|
uov_method | UpscaleOrVaryMethod | Enum type, value should one of 'Vary (Subtle)','Vary (Strong)','Upscale (1.5x)','Upscale (2x)','Upscale (Fast 2x)','Upscale (Custom)' |
upscale_value | float | default to None , 1.0-5.0, magnification, only for uov_method is 'Upscale (Custom)' |
input_image | str | input image, base64 str, or a URL |
response params:
This interface returns a universal response structure, refer to response
requests params:
host = "http://127.0.0.1:8888"
image = open("./examples/imgs/bear.jpg", "rb").read()
def upscale_vary(image, params: dict) -> dict:
"""
Upscale or Vary
"""
params["input_image"] = base64.b64encode(image).decode('utf-8')
response = requests.post(url=f"{host}/v2/generation/image-upscale-vary",
data=json.dumps(params),
headers={"Content-Type": "application/json"},
timeout=300)
return response.json()
result =upscale_vary(image=image,
params={
"uov_method": "Upscale (2x)",
"async_process": True
})
print(json.dumps(result, indent=4, ensure_ascii=False))
base info:
EndPoint_V1: /v1/generation/image-inpaint-outpaint
EndPoint_V2: /v2/generation/image-inpaint-outpaint
Method: Post
DataType: form|json
requests params
Name | Type | Description |
---|---|---|
input_image | string($binary) | binary image |
input_mask | string($binary) | binary image |
inpaint_additional_prompt | string | additional_prompt |
outpaint_selections | str | Image extension direction , 'Left', 'Right', 'Top', 'Bottom' seg with comma |
outpaint_distance_left | int | Image extension distance, default to 0 |
outpaint_distance_right | int | Image extension distance, default to 0 |
outpaint_distance_top | int | Image extension distance, default to 0 |
outpaint_distance_bottom | int | Image extension distance, default to 0 |
style_selections | List[str] | list Fooocus style seg with comma |
loras | str(List[Lora]) | list for lora, with configure, lora: Lora, example: [{"model_name": "sd_xl_offset_example-lora_1.0.safetensors", "weight": 0.5}] |
advanced_params | str(AdvancedParams) | AdvancedParams, AdvancedParams: AdvancedParams, send with str, None is available |
response params:
This interface returns a universal response structure, refer to response
requests example:
# example for inpaint outpaint v1
host = "http://127.0.0.1:8888"
image = open("./examples/imgs/bear.jpg", "rb").read()
def inpaint_outpaint(params: dict, input_image: bytes, input_mask: bytes = None) -> dict:
"""
example for inpaint outpaint v1
"""
response = requests.post(url=f"{host}/v1/generation/image-inpaint-outpaint",
data=params,
files={"input_image": input_image,
"input_mask": input_mask})
return response.json()
# image extension example
result = inpaint_outpaint(params={
"outpaint_selections": "Left,Right",
"async_process": True},
input_image=image,
input_mask=None)
print(json.dumps(result, indent=4, ensure_ascii=False))
# image inpaint example
source = open("./examples/imgs/s.jpg", "rb").read()
mask = open("./examples/imgs/m.png", "rb").read()
result = inpaint_outpaint(params={
"prompt": "a cat",
"async_process": True},
input_image=source,
input_mask=mask)
print(json.dumps(result, indent=4, ensure_ascii=False))
requests params
Name | Type | Description |
---|---|---|
input_image | str | input image, base64 str, or a URL |
input_mask | str | input mask, base64 str, or a URL |
inpaint_additional_prompt | str | additional prompt |
outpaint_selections | List[OutpaintExpansion] | OutpaintExpansion is Enum, value should one of "Left", "Right", "Top", "Bottom" |
outpaint_distance_left | int | Image extension distance, default to 0 |
outpaint_distance_right | int | Image extension distance, default to 0 |
outpaint_distance_top | int | Image extension distance, default to 0 |
outpaint_distance_bottom | int | Image extension distance, default to 0 |
response params:
This interface returns a universal response structure, refer to responseresponse params
requests example:
# example for inpaint outpaint v2
host = "http://127.0.0.1:8888"
image = open("./examples/imgs/bear.jpg", "rb").read()
def inpaint_outpaint(params: dict) -> dict:
"""
example for inpaint outpaint v2
"""
response = requests.post(url=f"{host}/v2/generation/image-inpaint-outpaint",
data=json.dumps(params),
headers={"Content-Type": "application/json"})
return response.json()
# image extension example
result = inpaint_outpaint(params={
"input_image": base64.b64encode(image).decode('utf-8'),
"input_mask": None,
"outpaint_selections": ["Left", "Right"],
"async_process": True})
print(json.dumps(result, indent=4, ensure_ascii=False))
# image inpaint example
source = open("./examples/imgs/s.jpg", "rb").read()
mask = open("./examples/imgs/m.png", "rb").read()
result = inpaint_outpaint(params={
"prompt": "a cat",
"input_image": base64.b64encode(source).decode('utf-8'),
"input_mask": base64.b64encode(mask).decode('utf-8'),
"async_process": True})
print(json.dumps(result, indent=4, ensure_ascii=False))
v0.3.27
has a break change. Interface based on change to inpaint-outpaint
after v0.3.27, this interface implements the functions of inpaint_outpaint
and image-prompt
.
Multi-function interface, which does not implement the functions of
inpaint_outpaint
andimage-prompt
at the same time in the same request
base info:
EndPoint_V1: /v1/generation/image-prompt
EndPoint_V2: /v2/generation/image-prompt
Method: Post
DataType: form|json
requests params
Name | Type | Description |
---|---|---|
input_image | Bytes | binary image, use for inpaint |
input_mask | Bytes | binary image mask, use for inpaint |
inpaint_additional_prompt | str | inpaint additional prompt |
outpaint_selections | str | Image extension direction , 'Left', 'Right', 'Top', 'Bottom' seg with comma |
outpaint_distance_left | int | Image extension distance, default to 0 |
outpaint_distance_right | int | Image extension distance, default to 0 |
outpaint_distance_top | int | Image extension distance, default to 0 |
outpaint_distance_bottom | int | Image extension distance, default to 0 |
cn_img1 | string($binary) | binary image |
cn_stop1 | float | default to 0.6 |
cn_weight1 | float | default to 0.6 |
cn_type1 | Enum | should one of "ImagePrompt", "FaceSwap", "PyraCanny", "CPDS" |
cn_img2 | string($binary) | binary image |
cn_stop2 | float | default to 0.6 |
cn_weight2 | float | default to 0.6 |
cn_type2 | Enum | should one of "ImagePrompt", "FaceSwap", "PyraCanny", "CPDS" |
cn_img3 | string($binary) | binary image |
cn_stop3 | float | default to 0.6 |
cn_weight3 | float | default to 0.6 |
cn_type3 | Enum | should one of "ImagePrompt", "FaceSwap", "PyraCanny", "CPDS" |
cn_img4 | string($binary) | binary image |
cn_stop4 | float | default to 0.6 |
cn_weight4 | float | default to 0.6 |
cn_type4 | Enum | should one of "ImagePrompt", "FaceSwap", "PyraCanny", "CPDS" |
style_selections | List[str] | list Fooocus style seg with comma |
loras | str(List[Lora]) | list for lora, with configure, lora: Lora, example: [{"model_name": "sd_xl_offset_example-lora_1.0.safetensors", "weight": 0.5}] |
advanced_params | str(AdvancedParams) | AdvancedParams, AdvancedParams: AdvancedParams, send with str, None is available |
response params:
This interface returns a universal response structure, refer to responseresponse params
requests example:
# image_prompt v1 example
host = "http://127.0.0.1:8888"
image = open("./examples/imgs/bear.jpg", "rb").read()
source = open("./examples/imgs/s.jpg", "rb").read()
mask = open("./examples/imgs/m.png", "rb").read()
def image_prompt(params: dict,
input_image: bytes=None,
input_mask: bytes=None,
cn_img1: bytes=None,
cn_img2: bytes=None,
cn_img3: bytes=None,
cn_img4: bytes=None,) -> dict:
"""
image prompt
"""
response = requests.post(url=f"{host}/v1/generation/image-prompt",
data=params,
files={
"input_image": input_image,
"input_mask": input_mask,
"cn_img1": cn_img1,
"cn_img2": cn_img2,
"cn_img3": cn_img3,
"cn_img4": cn_img4,
})
return response.json()
# image extend
params = {
"outpaint_selections": ["Left", "Right"],
"image_prompts": [] # required, can be empty list
}
result = image_prompt(params=params, input_image=image)
print(json.dumps(result, indent=4, ensure_ascii=False))
# inpaint
params = {
"prompt": "1girl sitting on the chair",
"image_prompts": [], # required, can be empty list
"async_process": True
}
result = image_prompt(params=params, input_image=source, input_mask=mask)
print(json.dumps(result, indent=4, ensure_ascii=False))
# image prompt
params = {
"prompt": "1girl sitting on the chair",
"image_prompts": [
{
"cn_stop": 0.6,
"cn_weight": 0.6,
"cn_type": "ImagePrompt"
},{
"cn_stop": 0.6,
"cn_weight": 0.6,
"cn_type": "ImagePrompt"
}]
}
result = image_prompt(params=params, cn_img1=image, cn_img2=source)
print(json.dumps(result, indent=4, ensure_ascii=False))
requests params
Name | Type | Description |
---|---|---|
input_image | str | base64 image, or a URL, use for inpaint |
input_mask | str | base64 image mask, or a URL, use for inpaint |
inpaint_additional_prompt | str | inpaint additional prompt |
outpaint_selections | List[] | Image extension direction , 'Left', 'Right', 'Top', 'Bottom' seg with comma |
outpaint_distance_left | int | Image extension distance, default to 0 |
outpaint_distance_right | int | Image extension distance, default to 0 |
outpaint_distance_top | int | Image extension distance, default to 0 |
outpaint_distance_bottom | int | Image extension distance, default to 0 |
image_prompts | List[ImagePrompt] | image list, include config, ImagePrompt struct: |
ImagePrompt
Name | Type | Description |
---|---|---|
cn_img | str | input image, base64 str, or a URL |
cn_stop | float | 0-1, default to 0.5 |
cn_weight | float | weight, 0-2, default to 1.0 |
cn_type | ControlNetType | ControlNetType Enum, should one of "ImagePrompt", "FaceSwap", "PyraCanny", "CPDS" |
response params:
This interface returns a universal response structure, refer to responseresponse params
requests example:
# image_prompt v2 example
host = "http://127.0.0.1:8888"
image = open("./examples/imgs/bear.jpg", "rb").read()
source = open("./examples/imgs/s.jpg", "rb").read()
mask = open("./examples/imgs/m.png", "rb").read()
def image_prompt(params: dict) -> dict:
"""
image prompt
"""
response = requests.post(url=f"{host}/v2/generation/image-prompt",
data=json.dumps(params),
headers={"Content-Type": "application/json"})
return response.json()
# image extend
params = {
"input_image": base64.b64encode(image).decode('utf-8'),
"outpaint_selections": ["Left", "Right"],
"image_prompts": [] # required, can be empty list
}
result = image_prompt(params)
print(json.dumps(result, indent=4, ensure_ascii=False))
# inpaint
params = {
"prompt": "1girl sitting on the chair",
"input_image": base64.b64encode(source).decode('utf-8'),
"input_mask": base64.b64encode(mask).decode('utf-8'),
"image_prompts": [], # required, can be empty list
"async_process": True
}
result = image_prompt(params)
print(json.dumps(result, indent=4, ensure_ascii=False))
# image prompt
params = {
"prompt": "1girl sitting on the chair",
"image_prompts": [
{
"cn_img": base64.b64encode(source).decode('utf-8'),
"cn_stop": 0.6,
"cn_weight": 0.6,
"cn_type": "ImagePrompt"
},{
"cn_img": base64.b64encode(image).decode('utf-8'),
"cn_stop": 0.6,
"cn_weight": 0.6,
"cn_type": "ImagePrompt"
}]
}
result = image_prompt(params)
print(json.dumps(result, indent=4, ensure_ascii=False))
this interface only provides v2 version
base info:
EndPoint: /v2/generation/text-to-image-with-ip
Method: Post
DataType: json
requests params
Name | Type | Description |
---|---|---|
image_prompts | List[ImagePrompt] | Image list |
requests example:
# text to image with image prompt example
host = "http://127.0.0.1:8888"
image = open("./examples/imgs/bear.jpg", "rb").read()
source = open("./examples/imgs/s.jpg", "rb").read()
def image_prompt(params: dict) -> dict:
"""
image prompt
"""
response = requests.post(url=f"{host}/v2/generation/text-to-image-with-ip",
data=json.dumps(params),
headers={"Content-Type": "application/json"})
return response.json()
params = {
"prompt": "A bear",
"image_prompts": [
{
"cn_img": base64.b64encode(source).decode('utf-8'),
"cn_stop": 0.6,
"cn_weight": 0.6,
"cn_type": "ImagePrompt"
},{
"cn_img": base64.b64encode(image).decode('utf-8'),
"cn_stop": 0.6,
"cn_weight": 0.6,
"cn_type": "ImagePrompt"
}
]
}
result = image_prompt(params)
print(json.dumps(result, indent=4, ensure_ascii=False))
base info:
EndPoint: /v1/tools/describe-image
Method: Post
DataType: form
requests params
Name | Type | Description |
---|---|---|
type | Enum | type, should be one of "Photo", "Anime" |
requests example:
def describe_image(image: bytes,
params: dict = {"type": "Photo"}) -> dict:
"""
describe-image
"""
response = requests.post(url="http://127.0.0.1:8888/v1/tools/describe-image",
params=params,
files={
"image": image
},
timeout=30)
return response.json()
response example:
{
"describe": "a young woman posing with her hands behind her head"
}
base info:
EndPoint: /v1/engines/all-models
Method: Get
requests example:
def all_models() -> dict:
"""
all-models
"""
response = requests.get(url="http://127.0.0.1:8888/v1/engines/all-models",
timeout=30)
return response.json()
response params:
{
"model_filenames": [
"juggernautXL_version6Rundiffusion.safetensors",
"sd_xl_base_1.0_0.9vae.safetensors",
"sd_xl_refiner_1.0_0.9vae.safetensors"
],
"lora_filenames": [
"sd_xl_offset_example-lora_1.0.safetensors"
]
}
base info:
EndPoint: /v1/engines/refresh-models
Method: Post
requests example
def refresh() -> dict:
"""
refresh-models
"""
response = requests.post(url="http://127.0.0.1:8888/v1/engines/refresh-models",
timeout=30)
return response.json()
response params
{
"model_filenames": [
"juggernautXL_version6Rundiffusion.safetensors",
"sd_xl_base_1.0_0.9vae.safetensors",
"sd_xl_refiner_1.0_0.9vae.safetensors"
],
"lora_filenames": [
"sd_xl_offset_example-lora_1.0.safetensors"
]
}
base info:
EndPoint: /v1/engines/styles
Method: Get
requests example:
def styles() -> dict:
"""
styles
"""
response = requests.get(url="http://127.0.0.1:8888/v1/engines/styles",
timeout=30)
return response.json()
response params:
[
"Fooocus V2",
"Fooocus Enhance",
...
"Watercolor 2",
"Whimsical And Playful"
]
base info:
EndPoint: /v1/engines/job-queue
Method: Get
requests example:
def job_queue() -> dict:
"""
job-queue
"""
response = requests.get(url="http://127.0.0.1:8888/v1/generation/job-queue",
timeout=30)
return response.json()
response params:
{
"running_size": 0,
"finished_size": 1,
"last_job_id": "cac3914a-926d-4b6f-a46a-83794a0ce1d4"
}
base info:
EndPoint: /v1/generation/query-job
Method: Get
requests example:
def taskResult(task_id: str) -> dict:
# get task status
task_status = requests.get(url="http://127.0.0.1:8888/v1/generation/query-job",
params={"job_id": task_id,
"require_step_preview": False},
timeout=30)
return task_status.json()
response params:
{
"job_id": "cac3914a-926d-4b6f-a46a-83794a0ce1d4",
"job_type": "Text to Image",
"job_stage": "SUCCESS",
"job_progress": 100,
"job_status": "Finished",
"job_step_preview": null,
"job_result": [
{
"base64": null,
"url": "http://127.0.0.1:8888/files/2023-11-27/b928e50e-3c09-4187-a3f9-1c12280bfd95.png",
"seed": 8228839561385006000,
"finish_reason": "SUCCESS"
}
]
}
base info:
EndPoint: /v1/generation/job-history
Method: get
requests example:
def job-history() -> dict:
"""
job-history
"""
response = requests.get(url="http://127.0.0.1:8888/v1/generation/job-history",
timeout=30)
return response.json()
response params:
{
"queue": [],
"history": [
"job_id": "cac3914a-926d-4b6f-a46a-83794a0ce1d4",
"is_finished": True
]
}
base info:
EndPoint: /v1/generation/stop
Method: post
requests example:
def stop() -> dict:
"""
stop
"""
response = requests.post(url="http://127.0.0.1:8888/v1/generation/stop",
timeout=30)
return response.json()
response params:
{
"msg": "success"
}
base info:
EndPoint: /ping
Method: get
pong
You can specify an address through '--webhook_url' on the command line so that you can receive notifications after asynchronous tasks are completed
Here is a simple example to demonstrate how 'webhook' works
First,start a simple server using the following code:
from fastapi import FastAPI
import uvicorn
app = FastAPI()
@app.post("/status")
async def status(requests: dict):
print(requests)
uvicorn.run(app, host="0.0.0.0", port=8000)
Then, start Fooocus API with --webhook-url http://host:8000/status
Submit a task in any way, and after completion, you will see the task completion information in the background of this simple server:
{'job_id': '717ec0b5-85df-4174-80d6-bddf93cd8248', 'job_result': [{'url': 'http://127.0.0.1:8888/files/2023-12-29/f1eca704-718e-4781-9d5f-82d41aa799d7.png', 'seed': '3283449865282320931'}]}
Name | Type | Description |
---|---|---|
disable_preview | bool | disable preview, default to False |
adm_scaler_positive | float | ADM Guidance Scaler, default to 1.5, range 0.1-3.0 |
adm_scaler_negative | float | negative ADM Guidance Scaler, default to 0.8, range 0.1-3.0 |
adm_scaler_end | float | ADM Guidance Scaler end value, default to 0.5, range 0.0-1.0 |
refiner_swap_method | str | refiner model swap method, default to joint |
adaptive_cfg | float | CFG Mimicking from TSNR, default to 7.0, range 1.0-30.0 |
sampler_name | str | sampler, default to default_sampler |
scheduler_name | str | scheduler, default to default_scheduler |
overwrite_step | int | Forced Overwrite of Sampling Step, default to -1, range -1-200 |
overwrite_switch | int | Forced Overwrite of Refiner Switch Step, default to -1, range -1-200 |
overwrite_width | int | Forced Overwrite of Generating Width, default to -1, range -1-2048 |
overwrite_height | int | Forced Overwrite of Generating Height, default to -1, range -1-2048 |
overwrite_vary_strength | float | Forced Overwrite of Denoising Strength of "Vary", default to -1, range -1-1.0 |
overwrite_upscale_strength | float | Forced Overwrite of Denoising Strength of "Upscale", default to -1, range -1-1.0 |
mixing_image_prompt_and_vary_upscale | bool | Mixing Image Prompt and Vary/Upscale, default to False |
mixing_image_prompt_and_inpaint | bool | Mixing Image Prompt and Inpaint, default to False |
debugging_cn_preprocessor | bool | Debug Preprocessors, default to False |
skipping_cn_preprocessor | bool | Skip Preprocessors, default to False |
controlnet_softness | float | Softness of ControlNet, default to 0.25, range 0.0-1.0 |
canny_low_threshold | int | Canny Low Threshold, default to 64, range 1-255 |
canny_high_threshold | int | Canny High Threshold, default to 128, range 1-255 |
freeu_enabled | bool | FreeU enabled, default to False |
freeu_b1 | float | FreeU B1, default to 1.01 |
freeu_b2 | float | FreeU B2, default to 1.02 |
freeu_s1 | float | FreeU B3, default to 0.99 |
freeu_s2 | float | FreeU B4, default to 0.95 |
debugging_inpaint_preprocessor | bool | Debug Inpaint Preprocessing, default to False |
inpaint_disable_initial_latent | bool | Disable initial latent in inpaint, default to False |
inpaint_engine | str | Inpaint Engine, default to v1 |
inpaint_strength | float | Inpaint Denoising Strength, default to 1.0, range 0.0-1.0 |
inpaint_respective_field | float | Inpaint Respective Field, default to 1.0, range 0.0-1.0 |
Name | Type | Description |
---|---|---|
model_name | str | model name |
weight | float | weight, default to 0.5 |
success response:
async_process: True
Name | Type | Description |
---|---|---|
job_id | int | job ID |
job_type | str | job type |
job_stage | str | job stage |
job_progress | float | job progress |
job_status | str | job status |
job_step_preview | str | job preview |
job_result | str | job result |
async_process: False
Name | Type | Description |
---|---|---|
base64 | str | base64 image, according to require_base64 params determines whether it is null |
url | str | result image url |
seed | int | image seed |
finish_reason | str | finish reason |
fail response: