You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Traceback (most recent call last):
File "main.py", line 851, in
trainer.fit(model, data)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 553, in fit
self._run(model)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 918, in _run
self._dispatch()
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 986, in _dispatch
self.accelerator.start_training(self)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/accelerators/accelerator.py", line 92, in start_training
self.training_type_plugin.start_training(trainer)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py", line 161, in start_training
self._results = trainer.run_stage()
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 996, in run_stage
return self._run_train()
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1045, in _run_train
self.fit_loop.run()
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/fit_loop.py", line 200, in advance
epoch_output = self.epoch_loop.run(train_dataloader)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/epoch/training_epoch_loop.py", line 130, in advance
batch_output = self.batch_loop.run(batch, self.iteration_count, self._dataloader_idx)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 101, in run
super().run(batch, batch_idx, dataloader_idx)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 148, in advance
result = self._run_optimization(batch_idx, split_batch, opt_idx, optimizer)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 194, in _run_optimization
closure()
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 236, in _training_step_and_backward_closure
result = self.training_step_and_backward(split_batch, batch_idx, opt_idx, optimizer, hiddens)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 549, in training_step_and_backward
self.backward(result, optimizer, opt_idx)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 590, in backward
result.closure_loss = self.trainer.accelerator.backward(result.closure_loss, optimizer, *args, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/accelerators/accelerator.py", line 276, in backward
self.precision_plugin.backward(self.lightning_module, closure_loss, *args, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/plugins/precision/precision_plugin.py", line 78, in backward
model.backward(closure_loss, optimizer, *args, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/core/lightning.py", line 1481, in backward
loss.backward(*args, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/torch/_tensor.py", line 363, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/torch/autograd/init.py", line 173, in backward
Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/torch/autograd/function.py", line 253, in apply
return user_fn(self, *args)
File "/root/data/juicefs_hz_cv_v3/11120102/project/generative-model/pesser-stable-diffusion/ldm/modules/diffusionmodules/util.py", line 138, in backward
output_tensors = ctx.run_function(*shallow_copies)
File "/root/data/juicefs_hz_cv_v3/11120102/project/generative-model/pesser-stable-diffusion/ldm/modules/attention.py", line 215, in _forward
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/normalization.py", line 189, in forward
return F.layer_norm(
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/torch/nn/functional.py", line 2486, in layer_norm
return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
RuntimeError: expected scalar type Half but found Float
The text was updated successfully, but these errors were encountered:
Traceback (most recent call last):
File "main.py", line 851, in
trainer.fit(model, data)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 553, in fit
self._run(model)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 918, in _run
self._dispatch()
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 986, in _dispatch
self.accelerator.start_training(self)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/accelerators/accelerator.py", line 92, in start_training
self.training_type_plugin.start_training(trainer)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py", line 161, in start_training
self._results = trainer.run_stage()
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 996, in run_stage
return self._run_train()
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1045, in _run_train
self.fit_loop.run()
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/fit_loop.py", line 200, in advance
epoch_output = self.epoch_loop.run(train_dataloader)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/epoch/training_epoch_loop.py", line 130, in advance
batch_output = self.batch_loop.run(batch, self.iteration_count, self._dataloader_idx)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 101, in run
super().run(batch, batch_idx, dataloader_idx)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 148, in advance
result = self._run_optimization(batch_idx, split_batch, opt_idx, optimizer)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 194, in _run_optimization
closure()
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 236, in _training_step_and_backward_closure
result = self.training_step_and_backward(split_batch, batch_idx, opt_idx, optimizer, hiddens)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 549, in training_step_and_backward
self.backward(result, optimizer, opt_idx)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 590, in backward
result.closure_loss = self.trainer.accelerator.backward(result.closure_loss, optimizer, *args, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/accelerators/accelerator.py", line 276, in backward
self.precision_plugin.backward(self.lightning_module, closure_loss, *args, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/plugins/precision/precision_plugin.py", line 78, in backward
model.backward(closure_loss, optimizer, *args, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/pytorch_lightning/core/lightning.py", line 1481, in backward
loss.backward(*args, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/torch/_tensor.py", line 363, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/torch/autograd/init.py", line 173, in backward
Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/torch/autograd/function.py", line 253, in apply
return user_fn(self, *args)
File "/root/data/juicefs_hz_cv_v3/11120102/project/generative-model/pesser-stable-diffusion/ldm/modules/diffusionmodules/util.py", line 138, in backward
output_tensors = ctx.run_function(*shallow_copies)
File "/root/data/juicefs_hz_cv_v3/11120102/project/generative-model/pesser-stable-diffusion/ldm/modules/attention.py", line 215, in _forward
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/normalization.py", line 189, in forward
return F.layer_norm(
File "/opt/conda/envs/ldm/lib/python3.8/site-packages/torch/nn/functional.py", line 2486, in layer_norm
return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
RuntimeError: expected scalar type Half but found Float
The text was updated successfully, but these errors were encountered: