-
Notifications
You must be signed in to change notification settings - Fork 0
/
eon.py
374 lines (320 loc) · 13.6 KB
/
eon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# noinspection PyProtectedMember
import heapq
import itertools
import math
def calculate_modulation(distance, reach_m, max_m):
if distance <= reach_m:
return max_m
elif distance > reach_m * (1 << (max_m - 1)):
return 0
else:
return max_m + 1 - int(math.ceil(math.log2(2 * distance / reach_m)))
def calculate_distance(modulation, reach_m, max_m):
return reach_m * (1 << (max_m - modulation))
def calculate_slots(demand, slot_bw, modulation):
return int(math.ceil(demand / (slot_bw * modulation)))
def calculate_bw(slots, slot_bw, modulation):
return slots * slot_bw * modulation
def decide_default(demand, distance, slots_available, slot_bw, reach_m, max_m):
modulation = calculate_modulation(distance, reach_m, max_m)
if modulation == 0:
return False
slots_required = calculate_slots(demand, slot_bw, modulation)
return slots_required <= slots_available
def check_slots(graph, path, cu, what):
cu_cmp = cu if what == 'reserve' else 0
edges = []
distance = 0.0
for src, dst, key in path:
try:
# noinspection PyProtectedMember
edge = graph._succ[src][dst][key]
except KeyError:
raise ValueError(f'Invalid path: optical edge between {src} and {dst} with key {key} not found')
if cu & edge['au'] == cu_cmp:
edges.append(edge)
distance += edge['distance']
else:
cu_end = cu.bit_length()
powered = (1 << cu_end) - 1
cu_start = (cu ^ powered).bit_length()
if what == 'reserve':
raise ValueError(f'Cannot {what} slots {cu_start}-{cu_end}, '
f'they are not free on optical edge between {src} {dst} {key}')
else:
raise ValueError(f'Cannot {what} slots {cu_start}-{cu_end}, '
f'they are not reserved on optical edge between {src} {dst} {key}')
return distance, edges
def xor_slots(edges, cu):
for edge in edges:
edge['au'] ^= cu
def iterate_continuous_blocks_from_end(slots_set):
while slots_set:
end = slots_set.bit_length()
powered = (1 << end) - 1
start = (slots_set ^ powered).bit_length()
new_set = (powered >> start) << start
yield (start, end, new_set)
slots_set ^= new_set
def filter_edges(g, org_g, cu_set, weight='cost'):
for u, du in g._succ.items():
for v, duv in du.items():
for k, data in duv.items():
if cu_set & data['au'] == cu_set:
data[weight] = org_g._succ[u][v][k][weight]
else:
data[weight] = None
# Filtered Graphs Algorithm
def backtrack(g, preds, sources, target, weight='cost'):
paths_to_target = []
stack = [[(target, None, 0), 0]]
top = 0
while top >= 0:
(u, v, k), i = stack[top]
if u in sources:
paths_to_target.append([edge for edge, n in reversed(stack[1:top + 1])])
break
if u not in sources and u in preds and len(preds[u]) > i:
edge = preds[u][i]
top += 1
if top == len(stack):
stack.append([edge, 0])
else:
stack[top] = [edge, 0]
else:
stack[top - 1][1] += 1
top -= 1
return paths_to_target
def dijkstra(g, sources, target, weight='cost', preds=None, paths=None,
cutoff=None, cu_set=None):
"""Uses Dijkstra's algorithm to find shortest weighted paths
Parameters
----------
g : NetworkX graph
sources : non-empty iterable of nodes
Starting nodes for paths. If this is just an iterable containing
a single node, then all paths computed by this function will
start from that node. If there are two or more nodes in this
iterable, the computed paths may begin from any one of the start
nodes.
weight: str
Function with (u, v, data) input that returns that edges weight
paths: dict of lists, optional (default=None)
empty dict to store the path list from source to each node, keyed by node.
If None, paths are not stored.
target : node label, optional
Ending node for paths. Search is halted when target is found.
cutoff : integer or float, optional
Depth to stop the search. Only return paths with length <= cutoff.
Returns
-------
distance : dictionary
A mapping from node to shortest distance to that node from one
of the source nodes.
Notes
-----
The optional predecessor and path dictionaries can be accessed by
the caller through the original pred and paths objects passed
as arguments. No need to explicitly return pred or paths.
"""
if not sources:
raise ValueError('sources must not be empty')
if paths:
raise ValueError('paths must be an empty dict')
g_succ = g._succ if g.is_directed() else g._adj
if paths is not None:
for source in sources:
paths[source] = [[]]
push = heapq.heappush
pop = heapq.heappop
dist = {} # dictionary of final distances
seen = {}
# fringe is heapq with 3-tuples (distance,c,node)
# use the count c to avoid comparing nodes (may not be able to)
c = itertools.count()
fringe = []
for source in sources:
seen[source] = 0
push(fringe, (0, next(c), source))
while fringe:
(d, _, v) = pop(fringe)
if v in dist:
continue # already searched this node.
dist[v] = d
if v == target:
break
for u, edges in g_succ[v].items():
for key, data in edges.items():
if cu_set is None or cu_set & data['au'] == cu_set:
cost = data[weight]
else:
cost = None
if cost is None:
continue
vu_dist = d + cost
if cutoff is not None:
if vu_dist > cutoff:
continue
# if u in dist:
# if vu_dist < dist[u]:
# raise ValueError('Contradictory paths found:',
# 'negative weights?')
seen_dist = seen.get(u, math.inf)
if vu_dist < seen_dist:
seen[u] = vu_dist
push(fringe, (vu_dist, next(c), u))
if preds is not None:
preds[u] = [(v, u, key)]
if paths is not None:
paths[u] = [[*path, (v, u, key)] for path in paths[v]]
# elif vu_dist == seen_dist:
# if preds is not None:
# preds[u].append((v, u, key))
# if paths is not None:
# paths[u].extend([*path, (v, u, key)] for path in paths[v])
# The optional predecessor and path dictionaries can be accessed
# by the caller via the preds and paths objects passed as arguments.
return dist
def dijkstra_filtered(g, sources, target, demand, max_cu, slot_bw, reach_m, max_m, weight='cost', decide=decide_default):
best_dist = math.inf
paths_to_target = []
for modulation in range(max_m, 0, -1):
slots = calculate_slots(demand, slot_bw, modulation)
if slots > max_cu:
continue
max_distance = calculate_distance(modulation, reach_m, max_m)
# if not inline:
# org_g = g
# g = org_g.copy()
cu_set = (1 << slots) - 1
for cu_start in range(max_cu - slots + 1):
if cu_start:
cu_set <<= 1
# if not inline:
# filter_edges(g, org_g, cu_set, weight)
preds = {}
# paths = {}
dists = dijkstra(g, sources, target, weight=weight, preds=preds, cutoff=max_distance, cu_set=cu_set)
# if target in dists:
# assert paths[target] == backtrack(g, preds, sources, target, weight)
if target in dists:
assert decide(demand, dists[target], slots, slot_bw, reach_m, max_m) # The same as cutoff=max_distance?
if dists[target] < best_dist:
paths_to_target = [(cu_start, cu_start + slots, path) for path in backtrack(g, preds, sources, target, weight)]
best_dist = dists[target]
if paths_to_target:
return best_dist, paths_to_target
return best_dist, paths_to_target
# Generic Dijkstra Algorithm (https://arxiv.org/abs/1810.04481)
class Label:
__slots__ = ['cost', 'cu_start', 'cu_end', 'cu_set', 'edge']
def __init__(self, cost, cu_start, cu_end, cu_set, edge):
self.cost = cost
self.cu_start = cu_start
self.cu_end = cu_end
self.cu_set = cu_set
self.edge = edge
def __str__(self):
return f'{self.edge} {self.cu_start} {self.cu_end} {self.cost}'
def __hash__(self):
return hash((self.cost, self.cu_set, self.edge))
def __lt__(self, other):
return self.cu_start <= other.cu_start and self.cu_end >= other.cu_end and \
(self.cost < other.cost or (self.cost == other.cost and self.cu_set != other.cu_set))
def __le__(self, other):
return NotImplemented
def __eq__(self, other):
return self.cost == other.cost and self.cu_set == other.cu_set
def __gt__(self, other):
return NotImplemented
def __ge__(self, other):
return NotImplemented
def backtrack_generic(g, labels, sources, target, weight='cost'):
paths_to_target = []
labels = {node: list(label_dict) for node, label_dict in labels.items()}
stack = [[(target, None, 0), 0]]
top = 0
current_cu_start = None
current_cu_end = None
current_cost = math.inf
while top >= 0:
(u, v, k), i = stack[top]
if u in sources:
paths_to_target.append((current_cu_start, current_cu_end, [edge for edge, n in reversed(stack[1:top + 1])]))
break
if u not in sources and u in labels and len(labels[u]) > i:
label = labels[u][i]
if top == 0:
current_cu_start = label.cu_start
current_cu_end = label.cu_end
else:
if not (label.cu_start <= current_cu_start and label.cu_end >= current_cu_end) or label.cost + g._succ[u][v][k][weight] != current_cost:
stack[top][1] += 1
continue
current_cost = label.cost
top += 1
if top == len(stack):
stack.append([label.edge, 0])
else:
stack[top] = [label.edge, 0]
else:
stack[top - 1][1] += 1
top -= 1
if v is not None:
current_cost += g._succ[u][v][k][weight]
return current_cost, paths_to_target
def dijkstra_generic(g, sources, target, demand, max_cu, slot_bw, reach_m, max_m, weight='cost', decide=decide_default):
if not sources:
raise ValueError('sources must not be empty')
g_succ = g._succ if g.is_directed() else g._adj
push = heapq.heappush
pop = heapq.heappop
perm_labels = {}
tent_labels = {}
queue = []
assert len(sources) == 1
assert target
for source in sources:
lab = Label(0, 0, max_cu, (1 << max_cu) - 1, (None, source, 0))
tent_labels[source] = {lab: True}
perm_labels[source] = {}
push(queue, (0, 0, lab))
while queue:
_, _, lab = pop(queue)
v = lab.edge[1]
if tent_labels[v].pop(lab, None) is None:
continue
perm_labels[v][lab] = True
if v == target:
break
for u, edges in g_succ[v].items():
for key, data in edges.items():
cost = data[weight]
if cost is None:
continue
cost = lab.cost + cost
for cu_start, cu_end, cu_set in iterate_continuous_blocks_from_end(lab.cu_set & data['au']):
lab_new = Label(cost, cu_start, cu_end, cu_set, (v, u, key))
if decide(demand, lab_new.cost, lab_new.cu_end - lab_new.cu_start, slot_bw, reach_m, max_m):
perm_labels_u = perm_labels.setdefault(u, {})
# ctn_perm[len(perm_labels_u)] += 1
# assert lab_new not in perm_labels_u
if not any(lab_u < lab_new for lab_u in perm_labels_u):
tent_labels_u = tent_labels.setdefault(u, {})
# assert len(perm_labels_u) + len(tent_labels_u) <= max_cu * len(g._pred[u]) / 2
# ctn_tent[len(tent_labels_u)] += 1
# assert lab_new not in tent_labels_u # Excludes non-euclidean costs
# if lab_new not in tent_labels_u: # Speeds up graphs with many shortest paths
to_del = []
for lab_u in tent_labels_u:
# Merge to single iteration (modification over the arxiv paper)
if lab_u < lab_new:
break
if lab_new < lab_u:
to_del.append(lab_u)
else:
for lab_u in to_del:
del tent_labels_u[lab_u]
tent_labels_u[lab_new] = True
push(queue, (lab_new.cost, lab_new.cu_start, lab_new))
return backtrack_generic(g, perm_labels, sources, target, weight)