forked from emit-sds/emit-ghg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
apply_glt.py
90 lines (70 loc) · 3.28 KB
/
apply_glt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#! /usr/bin/env python
#
# Copyright 2023 California Institute of Technology
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Philip G. Brodrick, [email protected]
import argparse
import numpy as np
from osgeo import gdal
from spectral.io import envi
from emit_utils.file_checks import envi_header
from utils import write_bil_chunk
def single_image_ortho(img_dat, in_glt, glt_nodata_value=0):
"""Orthorectify a single image
Args:
img_dat (array like): raw input image
in_glt (array like): glt - 2 band 1-based indexing for output file(x, y)
glt_nodata_value (int, optional): Value from glt to ignore. Defaults to 0.
Returns:
array like: orthorectified version of img_dat
"""
glt = in_glt.copy()
outdat = np.zeros((glt.shape[0], glt.shape[1], img_dat.shape[-1])) - 9999
valid_glt = np.all(glt != glt_nodata_value, axis=-1)
glt[valid_glt] -= 1 # account for 1-based indexing
outdat[valid_glt, :] = img_dat[glt[valid_glt, 1], glt[valid_glt, 0], :]
return outdat
def main(input_args=None):
parser = argparse.ArgumentParser(description="Robust MF")
parser.add_argument('glt_file', type=str, metavar='GLT', help='path to glt image')
parser.add_argument('raw_file', type=str, metavar='RAW', help='path to raw image')
parser.add_argument('out_file', type=str, metavar='OUTPUT', help='path to output image')
args = parser.parse_args(input_args)
glt_dataset = envi.open(envi_header(args.glt_file))
glt = glt_dataset.open_memmap(writeable=False, interleave='bip').copy()
del glt_dataset
glt_dataset = gdal.Open(args.glt_file)
img_ds = envi.open(envi_header(args.raw_file))
img_dat = img_ds.open_memmap(writeable=False, interleave='bip').copy()
ort_img = single_image_ortho(img_dat, glt)
band_names = None
if 'band names' in envi.open(envi_header(args.raw_file)).metadata.keys():
band_names = envi.open(envi_header(args.raw_file)).metadata['band names']
# Build output dataset
driver = gdal.GetDriverByName('ENVI')
driver.Register()
#TODO: careful about output datatypes / format
outDataset = driver.Create(args.out_file, glt.shape[1], glt.shape[0],
ort_img.shape[-1], gdal.GDT_Float32, options=['INTERLEAVE=BIL'])
outDataset.SetProjection(glt_dataset.GetProjection())
outDataset.SetGeoTransform(glt_dataset.GetGeoTransform())
for _b in range(1, ort_img.shape[-1]+1):
outDataset.GetRasterBand(_b).SetNoDataValue(-9999)
if band_names is not None:
outDataset.GetRasterBand(_b).SetDescription(band_names[_b-1])
del outDataset
write_bil_chunk(ort_img.transpose((0,2,1)), args.out_file, 0, (glt.shape[0], ort_img.shape[-1], glt.shape[1]))
if __name__ == '__main__':
main()