-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathlayers.py
70 lines (52 loc) · 2.39 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
from torch_scatter import scatter_add
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.nn.conv.cheb_conv import ChebConv
from torch_geometric.utils import remove_self_loops
from utils import normal
class ChebConv_Coma(ChebConv):
def __init__(self, in_channels, out_channels, K, normalization=None, bias=True):
super(ChebConv_Coma, self).__init__(in_channels, out_channels, K, normalization, bias)
def reset_parameters(self):
normal(self.weight, 0, 0.1)
normal(self.bias, 0, 0.1)
@staticmethod
def norm(edge_index, num_nodes, edge_weight=None, dtype=None):
edge_index, edge_weight = remove_self_loops(edge_index, edge_weight)
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ),
dtype=dtype,
device=edge_index.device)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, -deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self, x, edge_index, norm, edge_weight=None):
Tx_0 = x
out = torch.matmul(Tx_0, self.weight[0])
x = x.transpose(0,1)
Tx_0 = x
if self.weight.size(0) > 1:
Tx_1 = self.propagate(edge_index, x=x, norm=norm)
Tx_1_transpose = Tx_1.transpose(0, 1)
out = out + torch.matmul(Tx_1_transpose, self.weight[1])
for k in range(2, self.weight.size(0)):
Tx_2 = 2 * self.propagate(edge_index, x=Tx_1, norm=norm) - Tx_0
Tx_2_transpose = Tx_2.transpose(0, 1)
out = out + torch.matmul(Tx_2_transpose, self.weight[k])
Tx_0, Tx_1 = Tx_1, Tx_2
if self.bias is not None:
out = out + self.bias
return out
def message(self, x_j, norm):
return norm.view(-1, 1, 1) * x_j
class Pool(MessagePassing):
def __init__(self):
super(Pool, self).__init__(flow='target_to_source')
def forward(self, x, pool_mat, dtype=None):
x = x.transpose(0,1)
out = self.propagate(edge_index=pool_mat._indices(), x=x, norm=pool_mat._values(), size=pool_mat.size())
return out.transpose(0,1)
def message(self, x_j, norm):
return norm.view(-1, 1, 1) * x_j