-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathmodel.py
59 lines (51 loc) · 2.72 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
import torch.nn.functional as F
from layers import ChebConv_Coma, Pool
class Coma(torch.nn.Module):
def __init__(self, dataset, config, downsample_matrices, upsample_matrices, adjacency_matrices, num_nodes):
super(Coma, self).__init__()
self.n_layers = config['n_layers']
self.filters = config['num_conv_filters']
self.filters.insert(0, dataset.num_features) # To get initial features per node
self.K = config['polygon_order']
self.z = config['z']
self.downsample_matrices = downsample_matrices
self.upsample_matrices = upsample_matrices
self.adjacency_matrices = adjacency_matrices
self.A_edge_index, self.A_norm = zip(*[ChebConv_Coma.norm(self.adjacency_matrices[i]._indices(),
num_nodes[i]) for i in range(len(num_nodes))])
self.cheb = torch.nn.ModuleList([ChebConv_Coma(self.filters[i], self.filters[i+1], self.K[i])
for i in range(len(self.filters)-2)])
self.cheb_dec = torch.nn.ModuleList([ChebConv_Coma(self.filters[-i-1], self.filters[-i-2], self.K[i])
for i in range(len(self.filters)-1)])
self.cheb_dec[-1].bias = None # No bias for last convolution layer
self.pool = Pool()
self.enc_lin = torch.nn.Linear(self.downsample_matrices[-1].shape[0]*self.filters[-1], self.z)
self.dec_lin = torch.nn.Linear(self.z, self.filters[-1]*self.upsample_matrices[-1].shape[1])
self.reset_parameters()
def forward(self, data):
x, edge_index = data.x, data.edge_index
batch_size = data.num_graphs
x = x.reshape(batch_size, -1, self.filters[0])
x = self.encoder(x)
x = self.decoder(x)
x = x.reshape(-1, self.filters[0])
return x
def encoder(self, x):
for i in range(self.n_layers):
x = F.relu(self.cheb[i](x, self.A_edge_index[i], self.A_norm[i]))
x = self.pool(x, self.downsample_matrices[i])
x = x.reshape(x.shape[0], self.enc_lin.in_features)
x = F.relu(self.enc_lin(x))
return x
def decoder(self, x):
x = F.relu(self.dec_lin(x))
x = x.reshape(x.shape[0], -1, self.filters[-1])
for i in range(self.n_layers):
x = self.pool(x, self.upsample_matrices[-i-1])
x = F.relu(self.cheb_dec[i](x, self.A_edge_index[self.n_layers-i-1], self.A_norm[self.n_layers-i-1]))
x = self.cheb_dec[-1](x, self.A_edge_index[-1], self.A_norm[-1])
return x
def reset_parameters(self):
torch.nn.init.normal_(self.enc_lin.weight, 0, 0.1)
torch.nn.init.normal_(self.dec_lin.weight, 0, 0.1)