-
Notifications
You must be signed in to change notification settings - Fork 10
/
slides.html
691 lines (596 loc) · 24.1 KB
/
slides.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Magnetism in the Coolest, Smallest Stars</title>
<meta name="viewport"
content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
<link rel="stylesheet" href="reveal/css/reveal.min.css">
<link rel="stylesheet" href="pkgwtheme.css" id="theme">
<link rel="stylesheet" href="reveal/lib/css/zenburn.css">
<script>
document.write('<link rel="stylesheet" href="reveal/css/print/'+(window.location.search.match(/print-pdf/gi) ? 'pdf' : 'paper')+'.css" type="text/css" media="print">');
</script>
<!--[if lt IE 9]>
<script src="reveal/lib/js/html5shiv.js"></script>
<![endif]-->
</head>
<body>
<!-- Slides! -->
<div class="reveal">
<div class="slides">
<section>
<p style="text-align: center"><br><br><br>Turn off the popup
blocker before starting!</p>
<p style="text-align: center">Open presenter console with <code>s</code>.</p>
<p style="text-align: center">This really isn’t going to work
if the assets haven't been downloaded!</p>
</section>
<section data-background="assets/bd-aurora-impression_dwarfart.jpg">
<h1>Magnetism in the Coolest, Smallest Stars</h1>
<p class="footer">Peter K. G. Williams ·
<a href="https://twitter.com/pkgw">@pkgw</a> ·
<a href="http://newton.cx/~peter/">http://newton.cx/~peter/</a><br>
Bucknell University Physics Colloquium · 2013 Sep 19</p>
<p class="bgcred">Hallinan et al., NRAO/AUI/NSF</p>
<!-- I highlight my segue cues in red, but the elements in the <aside>
get sucked into a separate window via some evil magic, so I can't
easily define a CSS class that affects their styling. So I do it
all manually here with style="color: red". -->
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section data-background="assets/bd-aurora-impression_dwarfart.jpg">
<h1>Magnetism in the Coolest, Smallest Stars</h1>
<br><br><br>
<p style="text-align: center; font-size: larger">PKGW, Edo Berger,
Ben Cook, John Gizis, Ashley Zauderer</p>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>Magnetism is ubiquitous in astrophysics.</h2>
<p>… and it’s troublesome.</p>
<blockquote>“The uncertainty scales with the strength of the
magnetic field.” — truism</blockquote>
<div class="fragment">
<p style="text-align: center; font-size: bigger;">⇕</p>
<blockquote>“What happens when you add in a magnetic field?” —
generic seminar question</blockquote>
</div>
<br>
<div class="fragment">
<p>Magnetism plays a role on all sorts of scales:</p>
<ul>
<li>Galaxy clusters</li>
<li>Relativistic jets and shocks</li>
<li>Accretion disks around black holes, white dwarfs, etc.</li>
<li>The interstellar medium within galaxies</li>
<!-- Note: red highlights generally hard to see on screens -->
<li class="fragment highlight-green">Stellar systems</li>
</ul>
</div>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>The Sun is magnetized.</h2>
<p>Average surface field ∼1 Gauss (∼$10^{-4}$ Tesla).</p>
<video src="assets/sdo-plasma-rain-yt720.webm" width="100%" muted
controls loop class="slideautostart"></video>
<p class="lcred">NASA Solar Dynamics Observatory AIA
— <a href="http://youtu.be/M4kT0xoCiPg">YouTube</a></p>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>The solar magnetic field is generated deep within the Sun’s
interior.</h2>
<p><em>Dynamo</em>: converts mechanical to electromagnetic energy.</p>
<div class="ctr w70">
<img src="assets/wp-Sun_poster.svg">
<p class="lcred"><a href="http://commons.wikimedia.org/wiki/File:Sun_poster.svg">Wikimedia Commons</a></p>
</div>
<p>Solar dynamo believed to be an “α–Ω” mechanism.</p>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>The field is dissipated in the Sun’s outer atmosphere.</h2>
<p>This dissipation powers flares, coronal mass ejections (CMEs),
and underlies the mystery of coronal heating: how do you get
>10$^6$ K from 7000 K?</p>
<div class="ctr w60">
<video src="assets/soho-C2_Apr01.webm" width="100%" muted loop controls></video>
<p class="lcred">NASA <a href="http://sohowww.nascom.nasa.gov/gallery/Movies/flares.html">Solar and Heliospheric Observatory</a></p>
</div>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2><em>Magnetic reconnection</em> is a key process.</h2>
<p>The dominant dissipation mechanism, but a huge challenge to understand.</p>
<div class="ctr w90">
<video src="assets/sdo-reconnection-yt720.webm" width="100%" muted controls></video>
<p class="lcred">NASA SDO — <a href="http://youtu.be/MNsSQjSzLv0">YouTube</a></p>
</div>
<aside class="notes">
<span style="color: red"></span> •
thy at 0:21, obs at 0:47
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>The Earth is magnetized too.</h2>
<p>Average surface field ∼0.5 G (but radius is much smaller than Sun!).</p>
<br>
<div class="w45" style="display: inline-block; height: 360px; margin-right: 5px;">
<img src="assets/728501main_themis-magnetosphere.jpg">
<p class="lcred">NASA / Goddard Space Flight Center</p>
</div>
<div class="w45" style="display: inline-block; height: 360px; margin-left: 5px;">
<video src="assets/nasa-earth-recut-yt360.webm" muted controls></video>
<p class="lcred">NASA — <a href="http://youtu.be/lxWBlJ1kB7Q">YouTube</a></p>
</div>
<p>Field is much more dipolar than Sun.</p>
<p class="fragment highlight-green">Deflects CMEs and the solar wind
— <em>vital</em> protection!</p>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>Aurorae are reconnection phenomena.</h2>
<video src="assets/iss-aurora-yt360.webm" width="100%" muted
controls class="slideautostart"></video>
<p class="lcred">NASA
— <a href="http://youtu.be/M99NywdrFfw">YouTube</a></p>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>Solar activity has dramatic real-life impacts!</h2>
<p>CMEs routinely force satellite safe-moding</p>
<p>Geomagnetic storm of 1989: nine-hour, Quebec-wide blackout</p>
<p>“Carrington Event” of 1859:</p>
<ul>
<li>Telegraphs spontaneously catching fire</li>
<li>Aurorae visible in Cuba, Hawaii</li>
<li>Modern cost: $2 trillion? (<a href="http://www.lloyds.com/the-market/tools-and-resources/research/exposure-management/emerging-risks/emerging-risk-reports/business/solar-storm">Lloyd’s/AER</a>)</li>
</ul>
<p>Maunder Minimum / “Little Ice Age” tied to famines, wars, witch
hunts (<a href="http://dx.doi.org/10.1023%2FA%3A1005554519604">Behringer 1999</a>)</p>
<div class="ctr w70">
<img src="assets/nasa-ssn_yearly.jpg">
<p class="lcred">NASA</p>
</div>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>Our understanding of the solar and terrestrial dynamos is far from complete.</h2>
<p>Both phenomenologically and theoretically.</p>
<div class="w65" style="position: absolute; top: 160px; left: 5px">
<img src="assets/hathaway-bfly.gif">
<p class="lcred"><a href="http://solarscience.msfc.nasa.gov/SunspotCycle.shtml">NASA</a>
/ David Hathaway</p>
</div>
<div class="w30" style="position: absolute; right: 5px; bottom: 5px">
<p class="lcred" style="margin-bottom: 0px">Kitt Peak Solar Observatory</p>
<img src="assets/ucar-hale_rule.gif">
</div>
<aside class="notes">
<span style="color: red"></span> •
22 yr cycle; grand minima; Joy's law (polarity
pairing); Hale's law (tilts); MHD sim shortcomings; turbulence
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>Very small stars can provide deep insight.</h2>
<ul>
<li>Empirically: high levels of magnetic activity</li>
<li>Intermediate between Sun-like stars and planets</li>
<li>Source of data: dependence of various observables on stellar properties</li>
<li>Challenge/opportunity of <em>non-solar dynamo process</em></li>
</ul>
<div class="ctr w70">
<img src="assets/BrownDwarfCompare-WISE.jpg">
<p class="lcred">NASA / WISE</p>
</div>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>We target <em>ultracool dwarfs</em> (UCDs).</h2>
<p>The very smallest stars (hydrogen-burning) and brown dwarfs
(BDs; no H fusion). Temperatures $\lesssim$3000 K.</p>
<div style="display: inline-block"> <!-- inline-block shrinks the width -->
<img src="assets/dutch-hrdiag2005.gif">
<p class="lcred">Steven Dutch / UW Green Bay</p>
</div>
<aside class="notes">
<span style="color: red"></span> •
Backwards axes • "Early/late" terminology •
Breakdown of mass/SpT
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>UCDs may not be attention-getters, but they’re everywhere!</h2>
<p>A best-effort sample of objects within 8 parsecs (26 lightyears):</p>
<div class="ctr w70">
<img src="assets/kirkpatrick-nearby-spt.png">
<p class="lcred"><a href="http://dx.doi.org/10.1088/0004-637X/753/2/156">
Kirkpatrick+ (2012)</a></p>
</div>
<aside class="notes">
<span style="color: red"></span> •
O/B dearth: fewer <em>and</em> die faster
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>The UCD/BD regime represents the transition between stars and planets.</h2>
<div class="ctr w85">
<img src="assets/berta-unpub_mass-radius-2013.svg" class="w100">
<p class="lcred">Courtesy Z. Berta.</p>
</div>
<p>Jupiter is ∼320 ($10^{2.5}$) Earth masses, 11 Earth radii.</p>
<p>The Sun is ∼1000 Jupiter masses ($10^{5.5}$ Earth masses), 10 Jupiter radii.</p>
<aside class="notes">
<span style="color: red"></span> •
transition <em>not trivial</em> • ignore GJ1214B
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>Unlike the Sun, UCDs are fully convective.</h2>
<p>Recall: the solar dynamo depends crucially on the “tachocline”
interface layer between the radiative and convective zones!</p>
<div class="ctr w70">
<img src="assets/wp-Estrellatipos.png" class="w100">
<p class="lcred">Wikipedia
/ <a href="http://es.wikipedia.org/wiki/User:Xenoforme">Xenoforme</a></p>
</div>
<p>What happens to the dynamo?!</p>
<aside class="notes">
<span style="color: red"></span> •
explain mass labels
• <span style="color: green">this does not bode well for UCD
magnetism</span>
</aside>
</section>
<section>
<h2>Emission in many bands traces magnetism.</h2>
<div class="ctr w70">
<img class="w100" src="assets/mailmagazine24_sun-schematic.jpg">
<p class="lcred">mailmagazine24.com (climate change denialists)</p>
</div>
<p><em>Corona</em>: X-rays, radio</p>
<p><em>Transition region</em>: ultraviolet</p>
<p><em>Chromosphere</em>: optical spectral lines (e.g. Hα, 6563 Å)</p>
<p><em>Photosphere</em>: optical broadband variability</p>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>Standard tracers show a drop in magnetism. </h2>
<div style="float: left" class="w45">
<img src="assets/lxspt.svg">
<p class="lcred">PKGW+ (2013)</p>
</div>
<div style="float: right" class="w45">
<img src="assets/berger-2010-f5_lha-lb.png">
<p class="lcred">Berger+ (2010)</p>
</div>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>Radio observations show $\vec B$ remains robust over the
transition to full convection.</h2>
<div class="w45" style="float: right">
<img src="assets/berger-2009-f1_bursts.png">
<p class="lcred"><a href="http://dx.doi.org10.1088/0004-637X/695/1/310">Berger+
(2009)</a></p>
</div>
<p>Bright, bursty, circularly-polarized emission strongly indicates
<em>electron cyclotron maser instability</em> (ECMI).</p>
<p>$$\nu_\textrm{cyc} = \frac{e B}{2 \pi m_e c}$$</p>
<p>Easy handle on the characteristic magnetic field strength:</p>
<p>$$B \approx (360\textrm{ G}) \frac{\nu}{1\textrm{ GHz}}$$</p>
<p>Recall: solar surface field is ∼1 G.</p>
<p>This remains true down to extremely cool (900 K) objects
(<a href="http://dx.doi.org/10.1088/2041-8205/747/2/l22">Route &
Wolszczan, 2012</a>).
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>This elevated radio emission is a surprise.</h2>
<p>Most observations have obeyed $L_R \propto L_X^{\sim 3/4}$.</p>
<div class="ctr w55">
<img src="assets/lxlr.svg" class="w100">
<p class="lcred">PKGW+ (2013)</p>
</div>
<p>Another sign of a different regime of dynamo activity.</p>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>We may be able to detect extrasolar planets <em>directly</em> at
radio wavelengths.</h2>
<div class="ctr w55" style="display: inline-block">
<img src="assets/zarka-2007-f1_spec-cmp.jpg">
<p class="lcred"><a href="http://dx.doi.org/10.1016/j.pss.2006.05.045">Zarka+
(2007)</a></p>
</div>
<div class="ctr w40" style="display: inline-block">
<p>First claimed detection!</p>
<img style="background-color: white" class="w100"
src="assets/lecav-2013-f2_radio-eclipse.svg">
<p class="lcred"><a href="http://dx.doi.org/10.1051/0004-6361/201219789">Lecavelier
des Etangs+ (2013)</a></p>
<p>It’s a little dubious.</p>
</div>
<p class="fragment highlight-green">Observations will speak directly
to the habitability of these planets.</p>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>The fraction of active stars also increases.</h2>
<p>In fact, it seems to shoot up past the transition to full
convection.</p>
<div class="ctr w70">
<!-- SVG doesn't really support colored backgrounds (!) but we can
accomplish them with CSS -->
<img class="w100" style="background: white;" src="assets/west-2008-f3_act-vs-spt.svg">
<p class="lcred"><a href="http://dx.doi.org/10.1088/0004-6256/135/3/785">West+ (2008)</a></p>
</div>
<p>Yet another new behavior toward the UCD regime.</p>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>Magnetism and rotation are correlated.</h2>
<p>Observationally:</p>
<ul>
<li>UCDs are rapid rotators</li>
<li>More rotation → more magnetic activity, up to a point</li>
</ul>
<p>This makes sense in standard dynamo models.</p>
<div class="ctr w80">
<img class="w100" src="assets/wright-2013-f1_rot-act.png">
<p class="lcred"><a href="http://dx.doi.org/10.1002/asna.201211764">Wright+
(2013)</a></p>
</div>
<!-- <p><em>Rossby number</em>, $\textrm{Ro} = P_\textrm{rot} /
\tau_\textrm{conv}$ — dimensionless assessment of strength of
Coriolis effect.</p> -->
<!-- <p class="spacer">◆</p> -->
<p>Stars “spin down” via magnetized winds, but strength of effect
decreases with radius (recent realization
— <a href="http://dx.doi.org/10.1088/0004-637X/746/1/43">Reiners
& Mohanty, 2012</a>)</p>
<aside class="notes">
<span style="color: red">“One reason for this
high activity fraction is that UCDs are rapid rotators, and
rotation is correlated with magnetic activity.”</span> •
non-UCDs are generally spun-down • spun-up active binaries •
makes sense with dynamo
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>UCDs upset the rotation/activity relation.</h2>
<p>Fast rotation <em>and</em> a falloff of X-ray emission.</p>
<div class="ctr w65">
<img class="w100" src="assets/xrot.svg">
<p class="lcred">Cook, PKGW+ (2013)</p>
</div>
<p>The big puzzle: is this really due to rotation, or is it just a
correlation effect with mass/temperature?</p>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>Mass is not the only factor at play.</h2>
<p>We observed objects with similar masses, different rotational
velocities; also carefully collected published data.</p>
<p>Statistical analysis, accounting for upper
limits: <em>significant correlation in the narrow mass
range</em> as well as the broader sample.</p>
<div class="ctr w50">
<img class="w100" src="assets/xrot-regressions.svg">
<p class="lcred">Cook, PKGW+ (2013)</p>
</div>
<p>This could still be <em>correlation</em>
without <em>causation</em>.</p>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>Zeeman data track X-ray activity closely.</h2>
<p>Measure a mean field strength with complicated
spectropolarimetric “Zeeman-Doppler imaging” (ZDI) technique.</p>
<div class="ctr w60">
<img class="w100" src="assets/xrot-rxbv.svg">
<p class="lcred">Cook, PKGW+ (2013)</p>
</div>
<p>Caveat: ZDI data are not sensitive to tangled fields, and only
detect ≲15% of the total field.</p>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>Perhaps this stems from a bimodal dynamo.</h2>
<p>Stronger, larger-scale field → more X-ray?</p>
<p>Dynamo bimodality in fastest rotators
(<a href="http://dx.doi.org/10.1051/0004-6361/201220317">Gastine+,
2013</a>)</p>
<p>
<div class="w45" style="float: right">
<img class="w100" src="assets/hori-2013-f1_bistable.jpg">
<p class="lcred"><a href="http://dx.doi.org/10.1016/j.pepi.2013.03.005">Hori
& Wicht (2013)</a></p>
</div>
<div class="w50">
<img class="w100" style="background-color: white"
src="assets/gastine-2013-f1_bimodal-sim.svg">
<p class="lcred"><a href="http://dx.doi.org/10.1051/0004-6361/201220317">Gastine+
(2013)</a></p>
</div>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>Here are some takeaways.</h2>
<ul>
<li>Understanding stellar and planetary magnetism is a challenging
problem with real-life impacts.</li>
<li>Observations of ultracool dwarfs are providing insight.</li>
<li>Radio observations probe magnetism in the coolest, smallest
objects and may detect planets directly.</li>
<li>The falloff in UCD X-ray emission may be related to changes
in the topology of the magnetic field.</li>
</ul>
<p style="font-size: larger; text-align: center"><br>Thanks for
listening! Questions?</p>
<div style="position: absolute; bottom: 0px; font-size: smaller;">
<p><em>Me</em>: Peter K. G. Williams ·
<a href="https://twitter.com/pkgw">@pkgw</a> ·
<a href="http://newton.cx/~peter/">http://newton.cx/~peter/</a>
</p>
<p><em>Design credits</em>:
<a href="http://hakim.se/">Hakim El Hattab</a> (“night” theme),
<a href="https://twitter.com/julietulanovsky">Julieta Ulanovsky</a> (Montserrat font),
<a href="http://www.monotypeimaging.com/ProductsServices/TypeDesignerShowcase/SteveMatteson/">Steve Matteson</a> (Open Sans font).
</p>
<p><em>Tech credits</em>:
<a href="http://git-scm.com/">git</a>,
<a href="http://lab.hakim.se/reveal-js/">reveal.js</a>,
<a href="http://www.mathjax.org/">MathJax</a>,
<a href="http://mozilla.github.io/pdf.js/">pdf.js</a>,
<a href="https://developer.mozilla.org/">Firefox</a> developer tools.
</p>
<p style="font-size: smaller"><em>Acknowledgments</em>: this work
is supported in part by the NSF REU and DOD ASSURE programs
under NSF grant no. 1262851, the Smithsonian Institution, NSF
grant AST-1008361, and NASA Chandra Award Number G02-13007A
issued by the Chandra X-ray Observatory Center, operated by the
Smithsonian Astrophysical Observatory and NASA under contract
NAS8-03060.</p>
</div>
<aside class="notes">
<span style="color: red"></span> •
• <span style="color: green"></span>
</aside>
</section>
<section>
<h2>Magnetogram History Movie</h2>
<video src="assets/HathawayMovie.webm" width="95%" muted controls></video>
<p class="lcred"><a href="http://solarscience.msfc.nasa.gov/SunspotCycle.shtml">NASA</a>
/ David Hathaway</p>
</section>
<section data-state="sdodataslide">
<h2><a href="http://sdo.gsfc.nasa.gov/data/">http://sdo.gsfc.nasa.gov/data/</a></h2>
<iframe class="ctr" width="95%" height="95%" src="" id="sdoiframe"></iframe>
</section>
</div>
</div>
<!--
<div style="w90 ctr">
<canvas class="pdfimg" width=600 style="width: 100%"
data-href="assets/berta-unpub_mass-radius-2013.pdf"></canvas>
<p class="lcred">Courtesy Z. Berta</p>
</div>
-->
<!-- End of slides. -->
<script src="reveal/lib/js/head.min.js"></script>
<script src="reveal/js/reveal.min.js"></script>
<script src="pdfjs/compatibility.js"></script>
<script src="pdfjs/pdf.js"></script>
<script>
Reveal.initialize({
controls: false,
progress: false,
history: true,
center: false,
keyboard: true,
touch: false,
overview: true,
mouseWheel: false,
width: 960,
height: 720,
theme: false, // hardcoded with CSS import in <head>
transition: 'none', // default/cube/page/concave/zoom/linear/fade/none
transitionSpeed: 'default', // default/fast/slow
math: {
mathjax: 'mathjax/MathJax.js',
config: 'TeX-AMS_HTML-full',
},
dependencies: [
{ src: 'reveal/lib/js/classList.js',
condition: function() { return !document.body.classList; }},
{ src: 'reveal/plugin/markdown/marked.js',
condition: function() { return !!document.querySelector ('[data-markdown]'); }},
{ src: 'reveal/plugin/markdown/markdown.js',
condition: function() { return !!document.querySelector ('[data-markdown]'); }},
{ src: 'reveal/plugin/highlight/highlight.js', async: true,
callback: function() { hljs.initHighlightingOnLoad (); }},
{ src: 'reveal/plugin/notes/notes.js', async: true,
condition: function() { return !!document.body.classList; }},
{ src: 'mymath.js', async: true },
{ src: 'pdfimgs.js', async: true },
{ src: 'slideautostart.js', async: true },
],
});
// Only load SDO Data page if we go to that slide
Reveal.addEventListener ('sdodataslide', function () {
console.log('sdodataslide');
document.querySelector ('#sdoiframe').src = 'http://sdo.gsfc.nasa.gov/data/'
});
</script>
</body>
</html>