-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path03-00-InverseFunction.tex
96 lines (87 loc) · 3.24 KB
/
03-00-InverseFunction.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{InverseFunction}
\pmcreated{2013-03-22 13:53:52}
\pmmodified{2013-03-22 13:53:52}
\pmowner{matte}{1858}
\pmmodifier{matte}{1858}
\pmtitle{inverse function}
\pmrecord{14}{34645}
\pmprivacy{1}
\pmauthor{matte}{1858}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{03-00}
\pmclassification{msc}{03E20}
\pmsynonym{non-singular function}{InverseFunction}
\pmsynonym{nonsingular function}{InverseFunction}
\pmsynonym{non-singular}{InverseFunction}
\pmsynonym{nonsingular}{InverseFunction}
\pmsynonym{inverse}{InverseFunction}
\pmrelated{Function}
\pmdefines{invertible function}
\pmdefines{invertible}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\sR}[0]{\mathbb{R}}
\newcommand{\sC}[0]{\mathbb{C}}
\newcommand{\sN}[0]{\mathbb{N}}
\newcommand{\sZ}[0]{\mathbb{Z}}
\begin{document}
\PMlinkescapeword{term}
\PMlinkescapeword{inverse}
\PMlinkescapeword{satisfies}
{\bf Definition}
Suppose $f:X\to Y$ is a function between sets $X$ and $Y$,
and suppose $f^{-1}:Y\to X$ is a mapping that satisfies
\begin{eqnarray*}
f^{-1}\circ f &=& \operatorname{id}_X, \\
f\circ f^{-1} &=& \operatorname{id}_Y,
\end{eqnarray*}
where $\operatorname{id}_A$ denotes the identity function on the set $A$.
Then $f^{-1}$ is called the \emph{inverse of} $f$,
or the \emph{inverse function of} $f$.
If $f$ has an inverse near a point $x\in X$, then $f$ is
\emph{invertible near $x$}. (That is, if there is a set $U$ containing $x$
such that the restriction of $f$ to $U$ is invertible, then $f$ is invertible
near $x$.) If $f$ is invertible near all $x\in X$, then
$f$ is \emph{invertible}.
\subsubsection*{Properties}
\begin{enumerate}
\item When an inverse function exists, it is unique.
\item The inverse function and the inverse image of a set coincide
in the following sense.
Suppose $f^{-1}(A)$ is the inverse image of a set $A\subset Y$
under a function $f:X\to Y$.
If $f$ is a bijection, then $f^{-1}(y)=f^{-1}(\{y\})$.
\item The inverse function of a function $f:X\to Y$ exists if and only
if $f$ is a bijection, that is, $f$ is an injection and a surjection.
\item A linear mapping between vector spaces is invertible if and only if
the determinant of the mapping is nonzero.
\item For differentiable functions between Euclidean spaces, the inverse function
theorem gives a necessary and sufficient condition for the inverse to exist.
This can be generalized to maps between Banach spaces which are differentiable
in the sense of Frechet.
\end{enumerate}
\subsubsection*{Remarks}
When $f$ is a linear mapping (for instance, a matrix), the term \emph{non-singular} is
also used as a synonym for invertible.
%%%%%
%%%%%
\end{document}