-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path03B05-ContradictoryStatement.tex
65 lines (51 loc) · 2.23 KB
/
03B05-ContradictoryStatement.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{ContradictoryStatement}
\pmcreated{2013-03-22 16:27:07}
\pmmodified{2013-03-22 16:27:07}
\pmowner{pahio}{2872}
\pmmodifier{pahio}{2872}
\pmtitle{contradictory statement}
\pmrecord{9}{38608}
\pmprivacy{1}
\pmauthor{pahio}{2872}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{03B05}
\pmsynonym{contradiction}{ContradictoryStatement}
%\pmkeywords{false}
\pmrelated{Tautology}
\pmrelated{LogicalConnective}
\pmrelated{Contradiction}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\theoremstyle{definition}
\newtheorem*{thmplain}{Theorem}
\begin{document}
\PMlinkescapeword{terms} \PMlinkescapeword{simple} \PMlinkescapeword{column}
A contradictory statement is a statement (or form) which is false due to its logical form rather than because of the meaning of the terms employed.
In propositional logic, a {\em contradictory statement}, a.k.a. {\em contradiction}, is a statement which is false regardless of the truth values of the substatements which form it.\, According to G. Peano, one may generally denote a contradiction with the symbol $\curlywedge$.
For a simple example, the statement\, $P\!\wedge\!\lnot P$\, is a contradiction for any statement $P$.
The negation $\lnot Q$ of every contradiction $Q$ is a tautology, and vice versa:
$$\lnot\curlywedge = \curlyvee, \;\;\; \lnot\curlyvee = \curlywedge$$
To test a given statement or form to see if it is a contradiction, one may construct its truth table.\, If it turns out that every value of the last column is ``F'', then the statement is a contradiction.
Cf. the entry ``\PMlinkname{contradiction}{Contradiction}''.
%%%%%
%%%%%
\end{document}