-
Notifications
You must be signed in to change notification settings - Fork 4
/
06A05-LowestUpperBound.tex
39 lines (34 loc) · 1.4 KB
/
06A05-LowestUpperBound.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{LowestUpperBound}
\pmcreated{2013-03-22 11:52:18}
\pmmodified{2013-03-22 11:52:18}
\pmowner{djao}{24}
\pmmodifier{djao}{24}
\pmtitle{lowest upper bound}
\pmrecord{13}{30452}
\pmprivacy{1}
\pmauthor{djao}{24}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{06A05}
\pmdefines{least upper bound}
\pmdefines{greatest lower bound}
\pmdefines{supremum}
\pmdefines{infimum}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
%%%%\usepackage{xypic}
\begin{document}
Let $S$ be a set with a partial ordering $\leq$, and let $T$ be a subset of $S$. A \emph{lowest upper bound}, or \emph{supremum}, of $T$ is an upper bound $x$ of $T$ with the property that $x \leq y$ for every upper bound $y$ of $T$. The lowest upper bound of $T$, when it exists, is denoted $\operatorname{sup}(T)$.
A lowest upper bound of $T$, when it exists, is unique.
Greatest lower bound is defined similarly: a \emph{greatest lower bound}, or \emph{infimum}, of $T$ is a lower bound $x$ of $T$ with the property that $x \geq y$ for every lower bound $y$ of $T$. The greatest lower bound of $T$, when it exists, is denoted $\operatorname{inf}(T)$.
If $A = \{a_1,a_2,\ldots,a_n\}$ is a finite set, then the supremum of $A$ is simply $\max(A)$, and the infimum of $A$ is equal to $\min(A)$.
%%%%%
%%%%%
%%%%%
%%%%%
\end{document}