-
Notifications
You must be signed in to change notification settings - Fork 4
/
06A06-ZornsLemma.tex
54 lines (48 loc) · 1.53 KB
/
06A06-ZornsLemma.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{ZornsLemma}
\pmcreated{2013-03-22 12:09:04}
\pmmodified{2013-03-22 12:09:04}
\pmowner{yark}{2760}
\pmmodifier{yark}{2760}
\pmtitle{Zorn's lemma}
\pmrecord{10}{31341}
\pmprivacy{1}
\pmauthor{yark}{2760}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{06A06}
\pmclassification{msc}{03E25}
%\pmkeywords{Set theory}
\pmrelated{AxiomOfChoice}
\pmrelated{MaximalityPrinciple}
\pmrelated{HaudorffsMaximumPrinciple}
\pmrelated{ZornsLemmaAndTheWellOrderingTheoremEquivalenceOfHaudorffsMaximumPrinciple}
\pmrelated{EveryVectorSpaceHasABasis}
\pmrelated{TukeysLemma}
\pmrelated{ZermelosPostulate}
\pmrelated{KuratowskisLemma}
\pmrelated{EveryRingHasAMaximalIdeal}
\pmrelated{InductivelyOr}
\endmetadata
%\usepackage{amssymb}
%\usepackage{amsmath}
%\usepackage{amsfonts}
\begin{document}
\PMlinkescapeword{equivalent}
If $X$ is a partially ordered set
such that every chain in $X$ has an upper bound,
then $X$ has a maximal element.
Note that the empty chain in $X$ has an upper bound in $X$
if and only if $X$ is non-empty.
Because this case is rather different from the case of non-empty chains,
Zorn's Lemma is often stated in the following form:
If $X$ is a non-empty partially ordered set
such that every non-empty chain in $X$ has an upper bound,
then $X$ has a maximal element.
(In other words: Any non-empty inductively ordered set has a maximal element.)
In ZF, Zorn's Lemma is equivalent to the \PMlinkname{Axiom of Choice}{AxiomOfChoice}.
%%%%%
%%%%%
%%%%%
\end{document}