-
Notifications
You must be signed in to change notification settings - Fork 4
/
06B10-OrderInAnAlgebra.tex
68 lines (59 loc) · 2.05 KB
/
06B10-OrderInAnAlgebra.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{OrderInAnAlgebra}
\pmcreated{2013-03-22 13:41:22}
\pmmodified{2013-03-22 13:41:22}
\pmowner{alozano}{2414}
\pmmodifier{alozano}{2414}
\pmtitle{order in an algebra}
\pmrecord{10}{34362}
\pmprivacy{1}
\pmauthor{alozano}{2414}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{06B10}
%\pmkeywords{order}
%\pmkeywords{maximal order}
%\pmkeywords{algebra}
%\pmkeywords{ring of integers}
\pmrelated{ComplexMultiplication}
\pmdefines{order}
\pmdefines{maximal order}
\pmdefines{conductor of an order}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
Let $A$ be an algebra (not necessarily commutative), finitely generated over
$\mathbb{Q}$. An {\it order} $R$ of $A$ is a subring
of $A$ which is finitely generated as a
$\mathbb{Z}$-module and which satisfies $R \otimes \mathbb{Q}= A$.
{\bf Examples:}
\begin{enumerate}
\item The ring of integers in a number field is an order, known as
the {\it maximal order}.
\item Let $K$ be a quadratic imaginary field and $\mathcal{O}_K$ its
ring of integers. For each integer $n\geq 1$ the ring
$\mathcal{O}={\mathbb{Z}}+n\mathcal{O}_K$ is an order of $K$ (in fact it can be
proved that every order of $K$ is of this form). The number $n$ is called the {\it \PMlinkescapetext{conductor}} of the order $\mathcal{O}$.
\end{enumerate}
{\it Reference}: Joseph H. Silverman, {\it The arithmetic of
elliptic curves}, Springer-Verlag, New York, 1986.
%%%%%
%%%%%
\end{document}