-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path15-00-PentadiagonalMatrix.tex
67 lines (61 loc) · 2.18 KB
/
15-00-PentadiagonalMatrix.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{PentadiagonalMatrix}
\pmcreated{2013-03-22 13:23:23}
\pmmodified{2013-03-22 13:23:23}
\pmowner{drini}{3}
\pmmodifier{drini}{3}
\pmtitle{pentadiagonal matrix}
\pmrecord{6}{33927}
\pmprivacy{1}
\pmauthor{drini}{3}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15-00}
\pmclassification{msc}{65-00}
\pmsynonym{penta-diagonal matrix}{PentadiagonalMatrix}
%\pmkeywords{pentadiagonal penta-diagonal}
\pmrelated{TridiagonalMatrix}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
An $n \times n$ {\bf pentadiagonal} matrix (with $n\ge 3$) is
a matrix of the form
\[
\begin{pmatrix}
c_1 & d_1 & e_1 & 0 & \cdots & \cdots & 0 \\
b_1 & c_2 & d_2 & e_2 & \ddots & & \vdots \\
a_1 & b_2 & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & a_2 & \ddots & \ddots & \ddots & e_{n-3} & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & d_{n-2} & e_{n-2} \\
\vdots & & \ddots & a_{n-3} & b_{n-2} & c_{n-1} & d_{n-1} \\
0 & \cdots & \cdots & 0 & a_{n-2} & b_{n-1} & c_n
\end{pmatrix}.
\]
It follows that a pentadiagonal matrix is determined by five vectors:
one $n$-vector $c=(c_1,\ldots, c_n)$,
two $(n-1)$-vectors $b=(b_1,\ldots, b_{n-1})$
and $d=(d_1,\ldots, d_{n-1})$,
and two $(n-2)$-vectors $a=(a_1,\ldots, a_{n-2})$
and $e=(e_1,\ldots, e_{n-2})$.
It follows that a pentadiagonal matrix is completely determined
by $n+2(n-1)+2(n-2)=5n-6$ scalars.
%%%%%
%%%%%
\end{document}