-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path15-00-ProofThatdetEAEoperatornametrA.tex
95 lines (75 loc) · 2.84 KB
/
15-00-ProofThatdetEAEoperatornametrA.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{ProofThatdetEAEoperatornametrA}
\pmcreated{2013-03-22 15:51:56}
\pmmodified{2013-03-22 15:51:56}
\pmowner{cvalente}{11260}
\pmmodifier{cvalente}{11260}
\pmtitle{proof that $\det e^A = e^{\operatorname{tr}A}$}
\pmrecord{7}{37858}
\pmprivacy{1}
\pmauthor{cvalente}{11260}
\pmtype{Proof}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15-00}
\pmclassification{msc}{15A15}
%\pmkeywords{exponential}
%\pmkeywords{determinant}
%\pmkeywords{trace}
%\pmkeywords{Liouville}
\pmrelated{SchurDecomposition}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\trace}{\operatorname{tr}}
\begin{document}
According to Schur decomposition the matrix $A$ can be written after a suitable change of basis as $A=D+N$ where $D$ is a diagonal matrix and $N$ is a strictly upper triangular matrix.
The formula we aim to prove
$$ \det e^A = e^{\trace A} $$
is invariant under a change of basis and thus we can carry out the computation of the exponential in any basis we choose.
By definition
\begin{equation}
\label{def}
e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!}
\end{equation}
By the properties of diagonal and strictly upper triangular matrices we know that both $DN$ and $ND$ will also be strictly upper triangular matrices and so will their sum.
Thus the powers of $A$ are of the form:
\begin{eqnarray}
A &=& (D+N) = D+N_1\\
A^2 &=& (D+N)(D+N) = D^2 + N_2 \\
A^3 &=& (D+N)(D^2 + N_2) = D^3 + N_3\\
&\vdots& \\
A^k &=& D^k + N_k \\
&\vdots&
\end{eqnarray}
where all the $N_i$ matrices are strictly upper triangular.
Explicitly, $N_2 = DN_1+N_1D+N_1^2$ and by recursion $N_{n+1} = DN_n + N_n D + N_1 N_n$.
Using equation \ref{def} we can write
\begin{equation}
e^A = e^D + \tilde{N}
\end{equation}
where $\tilde{N} = \sum_{n=1}^{\infty}\frac{N_n}{n!}$ is strictly upper triangular and $e^D = \operatorname{diag}(e^{\lambda_1}, \cdots, e^{\lambda_n})$, where $D=\operatorname{diag}(\lambda_1, \cdots,\lambda_n)$.
$e^A$ will thus be an upper triangular matrix.
Since the determinant of an upper triangular matrix is just the product of the elements in its diagonal, we can write:
\begin{equation}
\label{result}
\det e^A = \prod_{i=1}^{n} e^{\lambda_i} = e^{\sum_{i=1}^n \lambda_i} = e^{\trace A}
\end{equation}
%%%%%
%%%%%
\end{document}