-
Notifications
You must be signed in to change notification settings - Fork 4
/
16-00-AdditiveInverseOfOneElementTimesAnotherElementIsTheAdditiveInverseOfTheirProduct.tex
63 lines (48 loc) · 1.76 KB
/
16-00-AdditiveInverseOfOneElementTimesAnotherElementIsTheAdditiveInverseOfTheirProduct.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{AdditiveInverseOfOneElementTimesAnotherElementIsTheAdditiveInverseOfTheirProduct}
\pmcreated{2013-03-22 15:43:40}
\pmmodified{2013-03-22 15:43:40}
\pmowner{cvalente}{11260}
\pmmodifier{cvalente}{11260}
\pmtitle{additive inverse of one element times another element is the additive inverse of their product}
\pmrecord{8}{37677}
\pmprivacy{1}
\pmauthor{cvalente}{11260}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{16-00}
\pmclassification{msc}{20-00}
\pmclassification{msc}{13-00}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
Let $R$ be a ring. For all $x,y \in R$
$(-x)\cdot y = x\cdot (-y) = -(x\cdot y)$
All we need to prove is that $(-x)\cdot y + x\cdot y = x\cdot (-y) + x\cdot y = 0$
Now: $(-x)\cdot y + x\cdot y = ((-x) + x)\cdot y$ by distributivity.
Since $(-x)+x=0$ by definition and for all $y$, $0\cdot y=0$
we get:
$(-x)\cdot y + x\cdot y = 0\cdot y = 0$ and thus $(-x)\cdot y = - (x\cdot y)$
For $x\cdot (-y)$, use the previous properties of rings to show that
$x\cdot (-y) + x\cdot y = x\cdot ((-y) +y) = x\cdot 0 = 0$
and thus $x \cdot (-y) = - (x\cdot y)$
%%%%%
%%%%%
\end{document}