-
Notifications
You must be signed in to change notification settings - Fork 4
/
16-00-CartesianProductOfVectorSpaces.tex
92 lines (75 loc) · 2.45 KB
/
16-00-CartesianProductOfVectorSpaces.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{CartesianProductOfVectorSpaces}
\pmcreated{2013-03-22 15:16:06}
\pmmodified{2013-03-22 15:16:06}
\pmowner{Mathprof}{13753}
\pmmodifier{Mathprof}{13753}
\pmtitle{Cartesian product of vector spaces}
\pmrecord{8}{37055}
\pmprivacy{1}
\pmauthor{Mathprof}{13753}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{16-00}
\pmclassification{msc}{13-00}
\pmclassification{msc}{20-00}
\pmclassification{msc}{15-00}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{mathrsfs}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\sR}[0]{\mathbb{R}}
\newcommand{\sC}[0]{\mathbb{C}}
\newcommand{\sN}[0]{\mathbb{N}}
\newcommand{\sZ}[0]{\mathbb{Z}}
\usepackage{bbm}
\newcommand{\Z}{\mathbbmss{Z}}
\newcommand{\C}{\mathbbmss{C}}
\newcommand{\F}{\mathbbmss{F}}
\newcommand{\R}{\mathbbmss{R}}
\newcommand{\Q}{\mathbbmss{Q}}
\newcommand*{\norm}[1]{\lVert #1 \rVert}
\newcommand*{\abs}[1]{| #1 |}
\newtheorem{thm}{Theorem}
\newtheorem{defn}{Definition}
\newtheorem{prop}{Proposition}
\newtheorem{lemma}{Lemma}
\newtheorem{cor}{Corollary}
\begin{document}
Suppose $V_1,\ldots, V_N$ are vector spaces over a field $\F$.
Then the Cartesian product $V_1\times \cdots \times V_N$ is a vector space
when addition and scalar multiplication is defined as follows
\begin{eqnarray*}
(u_1,\ldots, u_N) + (v_1,\ldots, v_N) &=& (u_1+v_1,\ldots, u_N+v_N), \\
k (u_1,\ldots, u_N) &=& (k u_1,\ldots, k u_N)
\end{eqnarray*}
for $u_i, v_i \in V_i$, $k\in \F$.
For example, the vector space structure of $\R^n$ if defined as above.
\subsubsection*{Properties}
\begin{enumerate}
\item If $V_i$ are vector spaces and $W_i\subset V_i$ are subspaces,
then $W_1\times \cdots \times W_N$ is a vector subspace of
$V_1\times \cdots \times V_N$.
\item The dimension of $V_1\times \cdots \times V_N$ is
$\dim V_1+ \cdots +\dim V_N$.
\end{enumerate}
%%%%%
%%%%%
\end{document}