-
Notifications
You must be signed in to change notification settings - Fork 4
/
16-00-VectorSpace.tex
57 lines (53 loc) · 1.91 KB
/
16-00-VectorSpace.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{VectorSpace}
\pmcreated{2013-03-22 11:49:10}
\pmmodified{2013-03-22 11:49:10}
\pmowner{djao}{24}
\pmmodifier{djao}{24}
\pmtitle{vector space}
\pmrecord{17}{30364}
\pmprivacy{1}
\pmauthor{djao}{24}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{16-00}
\pmclassification{msc}{13-00}
\pmclassification{msc}{20-00}
\pmclassification{msc}{15-00}
\pmclassification{msc}{70B15}
\pmsynonym{linear space}{VectorSpace}
\pmrelated{Module}
\pmrelated{Vector2}
\pmrelated{Vector}
\pmrelated{VectorSubspace}
\pmdefines{zero vector}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
%%%%\usepackage{xypic}
\renewcommand{\u}{\mathbf{u}}
\renewcommand{\v}{\mathbf{v}}
\newcommand{\w}{\mathbf{w}}
\newcommand{\0}{\mathbf{0}}
\begin{document}
Let $F$ be a field (or, more generally, a division ring). A \emph{vector space} $V$ over $F$ is a set with two operations, $+: V \times V \longrightarrow V$ and $\cdot: F \times V \longrightarrow V$, such that
\begin{enumerate}
\item $(\u+\v)+\w = \u+(\v+\w)$ for all $\u,\v,\w \in V$
\item $\u+\v=\v+\u$ for all $\u,\v\in V$
\item There exists an element $\0 \in V$ such that $\u+\0=\u$ for all $\u \in V$
\item For any $\u \in V$, there exists an element $\v \in V$ such that $\u+\v=\0$
\item $a \cdot (b \cdot \u) = (a \cdot b) \cdot \u$ for all $a,b \in F$ and $\u \in V$
\item $1 \cdot \u = \u$ for all $\u \in V$
\item $a \cdot (\u+\v) = (a \cdot \u) + (a \cdot \v)$ for all $a \in F$ and $\u,\v \in V$
\item $(a+b) \cdot \u = (a \cdot \u) + (b \cdot \u)$ for all $a,b \in F$ and $\u \in V$
\end{enumerate}
Equivalently, a vector space is a module $V$ over a ring $F$ which is a field (or, more generally, a division ring).
The elements of $V$ are called \emph{vectors}, and the element $\0 \in V$ is called the \emph{zero vector} of $V$.
%%%%%
%%%%%
%%%%%
%%%%%
\end{document}