-
Notifications
You must be signed in to change notification settings - Fork 4
/
16D25-MaximalIdealIsPrime.tex
56 lines (47 loc) · 1.93 KB
/
16D25-MaximalIdealIsPrime.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{MaximalIdealIsPrime}
\pmcreated{2013-03-22 17:37:59}
\pmmodified{2013-03-22 17:37:59}
\pmowner{pahio}{2872}
\pmmodifier{pahio}{2872}
\pmtitle{maximal ideal is prime}
\pmrecord{8}{40054}
\pmprivacy{1}
\pmauthor{pahio}{2872}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{16D25}
\pmclassification{msc}{13A15}
\pmrelated{SumOfIdeals}
\pmrelated{MaximumIdealIsPrimeGeneralCase}
\pmrelated{CriterionForMaximalIdeal}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\theoremstyle{definition}
\newtheorem*{thmplain}{Theorem}
\begin{document}
\textbf{Theorem.} In a commutative ring with non-zero unity, any maximal ideal is a prime ideal.
{\em Proof.}\, Let $\mathfrak{m}$ be a maximal ideal of such a ring $R$ and let the ring product $rs$ belong to $\mathfrak{m}$ but e.g. \,$r \notin \mathfrak{m}$. The maximality of $\mathfrak{m}$ implies that\,
$\mathfrak{m}\!+\!(r) = R = (1)$.\, Thus there exists an element \,$m \in \mathfrak{m}$\, and an element\, $x \in R$\, such that\, $m\!+\!xr = 1$.\, Now $m$ and $rs$ belong to $\mathfrak{m}$, whence
$$s = 1s = (m\!+\!xr)s = sm\!+\!x(rs) \in \mathfrak{m}.$$
So we can say that along with $rs$, at least one of its \PMlinkname{factors}{Product} belongs to $\mathfrak{m}$, and therefore $\mathfrak{m}$ is a prime ideal of $R$.
%%%%%
%%%%%
\end{document}