-
Notifications
You must be signed in to change notification settings - Fork 4
/
16D25-SemiprimeIdeal.tex
51 lines (40 loc) · 1.47 KB
/
16D25-SemiprimeIdeal.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{SemiprimeIdeal}
\pmcreated{2013-03-22 12:01:23}
\pmmodified{2013-03-22 12:01:23}
\pmowner{antizeus}{11}
\pmmodifier{antizeus}{11}
\pmtitle{semiprime ideal}
\pmrecord{11}{30990}
\pmprivacy{1}
\pmauthor{antizeus}{11}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{16D25}
\pmrelated{NSystem}
\pmdefines{semiprime ring}
\pmdefines{semiprime}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
%%%\usepackage{xypic}
\begin{document}
Let $R$ be a ring.
An ideal $I$ of $R$ is a {\it semiprime ideal}
if it satisfies the following equivalent conditions:
(a) $I$ can be expressed as an intersection of prime ideals of $R$;
(b) if $x \in R$, and $xRx \subset I$, then $x \in I$;
(c) if $J$ is a two-sided ideal of $R$ and $J^2 \subset I$, then $J \subset I$ as well;
(d) if $J$ is a left ideal of $R$ and $J^2 \subset I$, then $J \subset I$ as well;
(e) if $J$ is a right ideal of $R$ and $J^2 \subset I$, then $J \subset I$ as well.
Here $J^2$ is the product of ideals $J \cdot J$.
The ring $R$ itself satisfies all of these conditions (including being expressed as an intersection of an empty family of prime ideals) and is thus semiprime.
A ring $R$ is said to be a {\it semiprime ring} if its zero ideal is a semiprime ideal.
Note that an ideal $I$ of $R$ is semiprime if and only if the quotient ring $R/I$ is a semiprime ring.
%%%%%
%%%%%
%%%%%
\end{document}