-
Notifications
You must be signed in to change notification settings - Fork 4
/
16D40-FaithfullyFlat.tex
72 lines (64 loc) · 2.03 KB
/
16D40-FaithfullyFlat.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{FaithfullyFlat}
\pmcreated{2013-03-22 14:35:55}
\pmmodified{2013-03-22 14:35:55}
\pmowner{mathcam}{2727}
\pmmodifier{mathcam}{2727}
\pmtitle{faithfully flat}
\pmrecord{5}{36167}
\pmprivacy{1}
\pmauthor{mathcam}{2727}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{16D40}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\mc}{\mathcal}
\newcommand{\mb}{\mathbb}
\newcommand{\mf}{\mathfrak}
\newcommand{\ol}{\overline}
\newcommand{\ra}{\rightarrow}
\newcommand{\la}{\leftarrow}
\newcommand{\La}{\Leftarrow}
\newcommand{\Ra}{\Rightarrow}
\newcommand{\nor}{\vartriangleleft}
\newcommand{\Gal}{\text{Gal}}
\newcommand{\GL}{\text{GL}}
\newcommand{\Z}{\mb{Z}}
\newcommand{\R}{\mb{R}}
\newcommand{\Q}{\mb{Q}}
\newcommand{\C}{\mb{C}}
\newcommand{\<}{\langle}
\renewcommand{\>}{\rangle}
\begin{document}
Let $A$ be a commutative ring. Then $M$ if \emph{faithfully flat} if for any $A$-modules $P, Q$, and $R$, we have
\begin{align*}
0\ra P\ra Q\ra R\ra 0
\end{align*}
is exact if and only if the $M$-tensored sequence
\begin{align*}
0\ra M\otimes_A P\ra M\otimes_A Q\ra M\otimes_A R\ra 0
\end{align*}
is exact. (Note that the ``if and only if'' clause makes this stronger than the definition of flatness).
Equivalently, an $A$-module $M$ is faithfully flat iff $M$ is flat and the functor $-\otimes_A M$ is a faithful functor (and hence the name).
%%%%%
%%%%%
\end{document}