-
Notifications
You must be signed in to change notification settings - Fork 3
/
30B40-AnalyticContinuationOfRiemannZetausingIntegral.tex
182 lines (166 loc) · 5.5 KB
/
30B40-AnalyticContinuationOfRiemannZetausingIntegral.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{AnalyticContinuationOfRiemannZetausingIntegral}
\pmcreated{2013-03-22 16:53:59}
\pmmodified{2013-03-22 16:53:59}
\pmowner{rspuzio}{6075}
\pmmodifier{rspuzio}{6075}
\pmtitle{analytic continuation of Riemann zeta (using integral)}
\pmrecord{21}{39157}
\pmprivacy{1}
\pmauthor{rspuzio}{6075}
\pmtype{Example}
\pmcomment{trigger rebuild}
\pmclassification{msc}{30B40}
\pmclassification{msc}{30A99}
\pmrelated{EstimatingTheoremOfContourIntegral}
\pmrelated{PeriodicityOfExponentialFunction}
\pmrelated{AnalyticContinuationOfRiemannZeta}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
The Riemann zeta function can be analytically
continued to the whole complex plane minus the point 1
by means of an integral representation. Remember that the zeta functon
is defined by the series
\[
\zeta (s) = \sum_{n=1}^\infty {1 \over n^s}.
\]
When $\Re s > 1$, this series converges; furthermore, this convergence is
uniform on compact subsets of this half-plane, hence the series converges to
an analytic function on this half plane. However, the series diverges when
we have $\Re s < 1$, so this series cannot be used to define the zeta function
in the whole complex plane, which is why we must make an analytic continuation.
To make this continuation, we start by changing the variable in an integration:
\[
n^s \int_0^{\infty} e^{-nx} x^{s-1} \, dx =
\int_0^{\infty} e^{-y} y^{s-1} \, dy =
\Gamma (s)
\]
This provides us with an integral representation of our summand.
Substituting this into the series, we find that
\[
\zeta (s) = \sum_{n=1}^\infty
{1 \over \Gamma(s)} \int_0^{\infty} e^{-nx} x^{s-1} \, dx =
{1 \over \Gamma(s)}
\sum_{n=1}^\infty \int_0^{\infty}
e^{-nx} x^{s-1} \, dx.
\]
We note that
\[
\sum_{n=1}^\infty \int_0^{\infty}
\left| e^{-nx} x^{s-1} \right| \, dx =
\sum_{n=1}^\infty \int_0^{\infty}
e^{-nx} x^{|s-1|} \, dx =
\sum_{n=1}^\infty {\Gamma (|s - 1| + 1) \over n^s};
\]
because the series converges, hence it is possible
to interchange integration and summation and
subsequently sum a geometric series.
\[
\zeta(s) = {1 \over \Gamma (s)}
\sum_{n=1}^\infty \int_0^{\infty}
e^{-nx} x^{s-1} \, dx =
{1 \over \Gamma (s)}
\int_0^{\infty} \sum_{n=1}^\infty
e^{-nx} x^{s-1} \, dx =
{1 \over \Gamma (s)}
\int_0^{\infty}
{x^{s-1} \over e^x - 1} \, dx
\]
As it stands, the integral representation we have is not of
much use for analytically continuing the zeta function
because the integral diverges when $\Re s < 1$ on account of
the fact that the integrand behaves like $x^{-s}$ when $x$
is close to zero. However, it is possible to make use of the
theorem of Cauchy to move the path of integration away from
zero.
Given a real number $r > 0$, define the contour $C_r$ on the
Riemann surface of $z^{s-1}$ as follows: $C_r$ passes from
$+\infty$ to $r$ along a lift of the real axis, then continues
along the circle of radius $r$ clockwise, and finally goes
from $r$ to $+\infty$.
We now examine the integral over such a contour by breaking it
into three pieces.
\[
\int_{C_r}
{x^{s-1} \over e^x - 1} \, dx =
\int_r^\infty
{x^{s-1} \over e^x - 1} \, dx +
\int_{|x| = r}
{x^{s-1} \over e^x - 1} \, dx -
\int_r^\infty
{(e^{-2 \pi i}x)^{s-1} \over e^x - 1} \, dx.
\]
We may estimate the third integral in absolute value like so:
\[
\left| \int_{|x| = r}
{x^{s-1} \over e^x - 1} \, dx \right| \le
2 \pi r \sup_{|x| = r}
\left| {x^{s-1} \over e^x - 1} \right|
\]
The expression $x / (e^x - 1)$ represents an analytic function of
$x$, and hence a bounded function of $x$ in a neighborhood of $0$.
When $\Re s > 1$, it happens that $\lim_{x \to 0} |x| x^{s-2} = 0$, so
\[
\lim_{r \to 0} \left| \int_{|x| = r}
{x^{s-1} \over e^x - 1} \, dx \right| = 0.
\]
The third integral differs from the first integral by a phase, so
they may be combined by pulling out this common factor. When
$\Re s > 0$, we may take the limit as $r$ approaches $0$ after doing
so to obtain the following:
\[
\lim_{r \to 0}
\int_{C_r}
{x^{s-1} \over e^x - 1} \, dx =
\left( 1 + e^{2 \pi i (1 - s)} \right)
\int_0^\infty
{x^{s-1} \over e^x - 1} \, dx
\]
Since, aside from the branch point at
$0$, the only singularities of our integrand occur at multiples
of $2 \pi i$, it follows from Cauchy's theorem that
\[
\int_{C_a}
{x^{s-1} \over e^x - 1} \, dx =
\int_{C_b}
{x^{s-1} \over e^x - 1} \, dx
\]
whenever $0 < a < 2 \pi$ and $0 < b < 2 \pi$, which trivially implies that
\[
\lim_{r \to 0}
\int_{C_r}
{x^{s-1} \over e^x - 1} \, dx =
\int_{C_r}
{x^{s-1} \over e^x - 1} \, dx
\]
for any $r$ between $0$ and $2 \pi$. Therefore,
\[
\zeta (s) =
{1 \over \left( 1 + e^{2 \pi i (1 - s)} \right) \Gamma(s)}
\int_{C_\pi} {x^{s-1} \over e^x - 1} \, dx
\]
when $\Re z > 1$. This integral converges for all complex $s$ because
the exponential grows more rapidly than the power. Furthermore, this
integral defines an analytic function of $s$, so we have an analytic
continuation of the zeta function to the whole complex plane minus the point 1.
%%%%%
%%%%%
\end{document}