-
Notifications
You must be signed in to change notification settings - Fork 7
/
54-00-CompactopenTopology.tex
129 lines (121 loc) · 5.2 KB
/
54-00-CompactopenTopology.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{CompactopenTopology}
\pmcreated{2013-03-22 13:25:26}
\pmmodified{2013-03-22 13:25:26}
\pmowner{antonio}{1116}
\pmmodifier{antonio}{1116}
\pmtitle{compact-open topology}
\pmrecord{8}{33976}
\pmprivacy{1}
\pmauthor{antonio}{1116}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{54-00}
\pmsynonym{topology of compact convergence}{CompactopenTopology}
\pmrelated{UniformConvergence}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
%\setlength{\oddsidemargin}{.25in}
%\setlength{\evensidemargin}{.25in}
%\setlength{\textwidth}{6in}
%\setlength{\topmargin}{-0.4in}
%\setlength{\textheight}{8.5in}
\newenvironment{hwsols}[4]{\noindent{\sc\large Math #1 -- Solutions to Homework #2\\#3\\{\footnotesize by~#4}}\bigskip\\}{}
\newenvironment{bookprob}[2]{\noindent{\sl Section #1, Problem #2}\\}{\bigskip}
\newcommand{\probpart}[1]{\noindent{{\bf #1}}}
\newcommand{\vecu}{\mathbf{u}} % Vector u
\newcommand{\vech}{\mathbf{h}} % Vector h
\newcommand{\vecy}{\mathbf{y}} % Vector y
\newcommand{\vecx}{\mathbf{x}} % Vector x
\newcommand{\vecz}{\mathbf{z}} % Vector z
\newcommand{\vecv}{\mathbf{v}} % Vector v
\newcommand{\vecp}{\mathbf{p}} % Vector p
\newcommand{\vecw}{\mathbf{w}} % Vector w
\newcommand{\veca}{\mathbf{a}} % Vector a
\newcommand{\vecb}{\mathbf{b}} % Vector b
\newcommand{\vect}{\mathbf{t}} % Vector t
\newcommand{\vecn}{\mathbf{n}} % Vector n
\newcommand{\covA}{\mathcal{A}} % Open cover A
\newcommand{\covB}{\mathcal{B}} % Open cover B
\newcommand{\orig}{\mathbf{0}} % Vector origin
\newcommand{\limv}[2]{\lim\limits_{#1\rightarrow #2}}
\newcommand{\eb}{\mathbf{e}} % Standard basis
\newcommand{\comp}{\circ} % Function composition
\newcommand{\reals}{{\mathbb R}} % The reals
\newcommand{\integs}{{\mathbb Z}} % The integers
\newcommand{\setc}[2]{\left\{#1:\: #2\right\}}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\seq}[1]{\left(#1\right)}
\newcommand{\cycle}[1]{\left(#1\right)}
\newcommand{\tuple}[1]{\left(#1\right)}
\newcommand{\Partial}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\PartialSl}[2]{\partial #1/\partial #2}
\newcommand{\funcsig}[2]{#1\rightarrow #2}
\newcommand{\funcdef}[3]{#1:\funcsig{#2}{#3}}
\newcommand{\supp}{\mathop{\mathrm{Supp}}} % Support of a function
\newcommand{\sgn}{\mathop{\mathrm{sgn}}} % Sign function
\newcommand{\tr}[1]{#1^\mathrm{tr}} % Transpose of a matrix
\newcommand{\inprod}[2]{\left<#1,#2\right>} % Inner product
\newcommand{\dall}[2]{d{#1}_1\wedge\cdots\wedge d{#1}_{#2}} % dx_1 ^ ... ^ dk_k
\newenvironment{smallbmatrix}{\left[\begin{smallmatrix}}{\end{smallmatrix}\right]}
\newcommand{\maps}[2]{\mathop{\mathrm{Maps}}\left(#1,#2\right)}
\newcommand{\intoc}[2]{\left(#1,#2\right]}
\newcommand{\intco}[2]{\left[#1,#2\right)}
\newcommand{\intoo}[2]{\left(#1,#2\right)}
\newcommand{\intcc}[2]{\left[#1,#2\right]}
\newcommand{\transv}{\pitchfork}
\newcommand{\pair}[2]{\left\langle#1,#2\right\rangle}
\newcommand{\norm}[1]{\left\|#1\right\|}
\newcommand{\sqnorm}[1]{\left\|#1\right\|^2}
\newcommand{\bdry}{\partial}
\newcommand{\inv}[1]{#1^{-1}}
\newcommand{\tensor}{\otimes}
\newcommand{\bigtensor}{\bigotimes}
\newcommand{\im}{\operatorname{im}}
\newcommand{\coker}{\operatorname{im}}
\newcommand{\map}{\operatorname{Map}}
\newcommand{\crit}{\operatorname{Crit}}
\newtheorem{thm}{Theorem}[section]
\newtheorem{dthm}{Desired Theorem}[section]
\newtheorem{cor}[thm]{Corollary}
\newtheorem{dcor}[thm]{Desired Corollary}
\newtheorem{lem}[thm]{Lemma}
\newtheorem{defn}{Definition}
\newcommand{\FIXME}[1]{\textsl{[#1\/]}\typeout{[FIXME remaining]}}
\newcommand{\FIXNOTE}[1]{\footnote{\FIXME{#1}}}
\newcommand{\FIXCITE}{{\textbf [CITE]}}
\newcommand{\cross}{\times}
\newcommand{\del}{\nabla}
\newcommand{\homeo}{\cong}
\newcommand{\codim}{\operatorname{codim}}
\begin{document}
\newcommand{\fU}{{\mathcal U}}
Let $X$ and $Y$ be topological spaces, and let $C(X,Y)$ be the set of continuous maps from $X$ to $Y.$ Given a compact subspace $K$ of $X$ and an open set $U$ in $Y,$ let
\[
\fU_{K,U} := \set{f\in C(X,Y):\: f(x)\in U\, \text{whenever}\, x\in K}.
\]
Define the {\em compact-open topology} on $C(X,Y)$ to be the topology generated by the subbasis
\[
\set{\fU_{K,U}:\: K\subset X\,\text{compact,}\quad U\subset Y\, \text{open} }.
\]
If $Y$ is a uniform space (for example, if $Y$ is a metric space), then this is the topology of uniform convergence on compact sets. That is, a sequence $\seq{f_n}$ converges to $f$ in the compact-open topology if and only if for every compact subspace $K$ of $X,$ $\seq{f_n}$ converges to $f$ uniformly on $K$. If in addition $X$ is a compact space, then this is the topology of uniform convergence.
%%%%%
%%%%%
\end{document}