-
Notifications
You must be signed in to change notification settings - Fork 7
/
54-00-ParacompactTopologicalSpace.tex
47 lines (43 loc) · 1.52 KB
/
54-00-ParacompactTopologicalSpace.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{ParacompactTopologicalSpace}
\pmcreated{2013-03-22 12:12:47}
\pmmodified{2013-03-22 12:12:47}
\pmowner{mathcam}{2727}
\pmmodifier{mathcam}{2727}
\pmtitle{paracompact topological space}
\pmrecord{9}{31540}
\pmprivacy{1}
\pmauthor{mathcam}{2727}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{54-00}
\pmclassification{msc}{55-00}
\pmsynonym{paracompact space}{ParacompactTopologicalSpace}
\pmrelated{ExampleOfParacompactTopologicalSpaces}
\pmdefines{paracompact}
\pmdefines{paracompactness}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\begin{document}
\PMlinkescapeword{normal}
\PMlinkescapeword{continuous}
A topological space $X$ is said to be \emph{paracompact} if every open cover of $X$ has a locally finite open refinement.
In more detail, if $(U_i)_{i\in I}$ is any family of open subsets of $X$ such that $$\cup_{i\in I}U_i = X\;,$$
then there exists another family $(V_i)_{i\in I}$ of open sets such that
$$\cup_{i\in I}V_i = X$$
$$V_i\subset U_i\text{ for all }i\in I$$
and any specific $x\in X$ is in $V_i$ for only finitely many $i$.
Some properties:
\begin{itemize}
\item Any metric or metrizable space is paracompact (A. H. Stone).
\item Given an open cover of a paracompact space $X$, there exists a (continuous) partition of unity on $X$ subordinate to that cover.
\item A paracompact , Hausdorff space is regular.
\item A compact or pseudometric space is paracompact.
\end{itemize}
%%%%%
%%%%%
%%%%%
\end{document}