-
Notifications
You must be signed in to change notification settings - Fork 7
/
54A05-CoerciveFunction.tex
67 lines (59 loc) · 1.9 KB
/
54A05-CoerciveFunction.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{CoerciveFunction}
\pmcreated{2013-03-22 15:20:13}
\pmmodified{2013-03-22 15:20:13}
\pmowner{paolini}{1187}
\pmmodifier{paolini}{1187}
\pmtitle{coercive function}
\pmrecord{5}{37154}
\pmprivacy{1}
\pmauthor{paolini}{1187}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{54A05}
\pmsynonym{coercive}{CoerciveFunction}
\pmsynonym{coercitive}{CoerciveFunction}
\pmsynonym{coercitive function}{CoerciveFunction}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\R}{\mathbb R}
\newtheorem{theorem}{Theorem}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\theoremstyle{remark}
\newtheorem{example}{Example}
\begin{document}
\begin{definition}[coercive function]
Let $X$ and $Y$ be topological spaces.
A function $f\colon X\to Y$ is said to be \emph{coercive} if for every compact set $J\subset Y$ there exists a compact set $K\subset X$ such that
\[
F(X\setminus K) \subset Y\setminus J.
\]
\end{definition}
The general definition given above has a clear sense when specialized to the Euclidean spaces, as shown in the following result.
\begin{proposition}[coercive functions on $\R^n$]
A function $f\colon \R^n \to \R^m$ is coercive if and only if
\[
\lim_{|x|\to +\infty} |f(x)| = +\infty.
\]
\end{proposition}
%%%%%
%%%%%
\end{document}