-
Notifications
You must be signed in to change notification settings - Fork 7
/
54A05-CompositionWithCoerciveFunction.tex
89 lines (73 loc) · 2.12 KB
/
54A05-CompositionWithCoerciveFunction.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{CompositionWithCoerciveFunction}
\pmcreated{2013-03-22 15:20:16}
\pmmodified{2013-03-22 15:20:16}
\pmowner{matte}{1858}
\pmmodifier{matte}{1858}
\pmtitle{composition with coercive function}
\pmrecord{6}{37155}
\pmprivacy{1}
\pmauthor{matte}{1858}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{54A05}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{mathrsfs}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\sR}[0]{\mathbb{R}}
\newcommand{\sC}[0]{\mathbb{C}}
\newcommand{\sN}[0]{\mathbb{N}}
\newcommand{\sZ}[0]{\mathbb{Z}}
\usepackage{bbm}
\newcommand{\Z}{\mathbbmss{Z}}
\newcommand{\C}{\mathbbmss{C}}
\newcommand{\F}{\mathbbmss{F}}
\newcommand{\R}{\mathbbmss{R}}
\newcommand{\Q}{\mathbbmss{Q}}
\newcommand*{\norm}[1]{\lVert #1 \rVert}
\newcommand*{\abs}[1]{| #1 |}
\newtheorem{thm}{Theorem}
\newtheorem{defn}{Definition}
\newtheorem{prop}{Proposition}
\newtheorem{lemma}{Lemma}
\newtheorem{cor}{Corollary}
\begin{document}
\begin{thm} Suppose $X,Y,Z$ are topological spaces,
$f\colon X\to Y$ is a bijective proper map, and
$g\colon Y\to Z$ is a coercive map.
Then $g\circ f\colon X\to Z$ is a coercive map.
\end{thm}
\begin{proof}
Let $J\subseteq Z$ be a compact set. As $g$ is coercive, there
is a compact set $K\subseteq Y$ such that
$$
g(Y\setminus K) \subseteq Z\setminus J.
$$
Let $I=f^{-1}(K)$, and since $f$ is a proper map $I$ is compact.
Thus
$$
(g\circ f) (X\setminus I) = g(Y\setminus K) \subseteq Z\setminus J
$$
and $g\circ f$ is coercive.
\end{proof}
%%%%%
%%%%%
\end{document}