-
Notifications
You must be signed in to change notification settings - Fork 7
/
54A20-AnotherProofOfDinisTheorem.tex
154 lines (135 loc) · 5.22 KB
/
54A20-AnotherProofOfDinisTheorem.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{AnotherProofOfDinisTheorem}
\pmcreated{2013-03-22 14:04:37}
\pmmodified{2013-03-22 14:04:37}
\pmowner{gumau}{3545}
\pmmodifier{gumau}{3545}
\pmtitle{another proof of Dini's theorem}
\pmrecord{11}{35437}
\pmprivacy{1}
\pmauthor{gumau}{3545}
\pmtype{Proof}
\pmcomment{trigger rebuild}
\pmclassification{msc}{54A20}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
This is the version of the \textbf{Dini's theorem} I will prove:
Let $K$ be a compact metric space and $\left( {f_n }
\right)_{n\in N} \subset C(K)$ which converges pointwise to $f\in
C(K)$.
Besides, $f_n (x)\ge f_{n+1} (x)\quad \forall x\in K,\forall n$.
Then $\left( {f_n } \right)_{n\in N} $ converges uniformly in $K$.
\textbf{Proof}
Suppose that the sequence does not converge uniformly. Then, by definition,
\[
\exists \varepsilon >0\;\text{such that }\forall m\in N\;\exists \;n_m
>m,\;x_m \in K\;\text{such that }\quad \left| {f_{n_m } (x_m )-f(x_m )}
\right|\ge \varepsilon .
\]
So,
\[
\begin{array}{l}
\text{For } \;m=1\;\exists \;n_1 >1\;,\;x_1 \in K\;\text{such that }\;\left| {f_{n_1 } (x_1
)-f(x_1 )} \right|\ge \varepsilon \\
\exists \;n_2 >n_1 \;,\;x_2 \in K\;\text{such that }\;\left| {f_{n_2 } (x_2
)-f(x_2 )} \right|\ge \varepsilon \\
\vdots \\
\exists \;n_m >n_{m-1} \;,\;x_m \in K\;\text{such that }\;\left| {f_{n_m } (x_m
)-f(x_m )} \right|\ge \varepsilon \\
\end{array}
\]
Then we have a sequence $\left( {x_m } \right)_m \subset K$ and $\left( {f_{n_{m}} } \right)_m \subset \left( {f_n } \right)_n$
is a subsequence of the original sequence of functions. $K$ is compact, so there is a subsequence of $\left( {x_m } \right)_m$
which converges in $K$, that is, $\left( {x_{m_{j}} } \right)_j $ such that
\[
x_{m_{j}}\longrightarrow x \in K
\]
I will prove that $f$ is not continuous in $x$ (A contradiction with one of the hypothesis).
To do this, I will show that $f\left( {x_{m_{j}} } \right)_j $ does not converge to $f(x)$, using above's $\varepsilon$.
Let $j_0 \;\text{such that }\;j\ge j_0 \Rightarrow \left| {f_{n_{m_j } } (x)-f(x)}
\right|<\raise0.7ex\hbox{$\varepsilon $} \!\mathord{\left/ {\vphantom
{\varepsilon 4}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$4$}$,
which exists due to the punctual convergence of the sequence. Then,
particularly, $\left| {f_{n_{m_{j_o } } } (x)-f(x)}
\right|<\raise0.7ex\hbox{$\varepsilon $} \!\mathord{\left/ {\vphantom
{\varepsilon 4}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$4$}$.
Note that
\[
\left| {f_{n_{m_j } } (x_{m_j } )-f(x_{m_j } )} \right|=f_{n_{m_j } }
(x_{m_j } )-f(x_{m_j } )
\]
because (using the hypothesis $f_n (y)\ge f_{n+1} (y)\quad \forall y\in K,\forall n$) it's easy to see that
\[
f_n (y)\ge f(y)\quad \forall y\in K,\forall n
\]
Then, $f_{n_{m_j } } (x_{m_j } )-f(x_{m_j } )\ge \varepsilon \;\forall
j$. And also the hypothesis implies
\[
f_{n_{m_j } } (y)\ge f_{n_{m_{j+1} } } (y)\;\;\forall y\in K,\forall j
\]
So, $j\ge j_0 \Rightarrow f_{n_{m_{j_0 } } } (x_{m_j } )\ge f_{n_{m_j } } (x_{m_j } ),$ which implies
\[
\left| {f_{n_{m_{j_0 } } } (x_{m_j } )-f(x_{m_j } )} \right|\ge \varepsilon
\]
Now,
\[
\left| {f_{n_{m_{j_0 } } } (x_{m_j } )-f(x)} \right|+\left| {f(x_{m_j }
)-f(x)} \right|\ge \left| {f_{n_{m_{j_0 } } } (x_{m_j } )-f(x_{m_j } )}
\right|\ge \varepsilon \;\;\forall j\ge j_0
\]
and so
\[
\left| {f(x_{m_j } )-f(x)} \right|\ge \varepsilon -\left| {f_{n_{m_{j_0 } }
} (x_{m_j } )-f(x)} \right|\;\;\forall j\ge j_0 .
\]
On the other hand,
\[
\left| {f_{n_{m_{j_0 } } } (x_{m_j } )-f(x)} \right|\le \left|
{f_{n_{m_{j_0 } } } (x_{m_j } )-f_{n_{m_{j_0 } } } (x)} \right|+\left|
{f_{n_{m_{j_0 } } } (x)-f(x)} \right|
\]
And as $f_{n_{m_{j_0 } } } $ is continuous, there is a $j_1 $
such that
\[
j\ge j_1 \Rightarrow \left| {f_{n_{m_{j_0 } } } (x_{m_j }
)-f_{n_{m_{j_0 } } } (x)} \right|<\raise0.7ex\hbox{$\varepsilon $}
\!\mathord{\left/ {\vphantom {\varepsilon
4}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$4$}
\]
Then,
\[
j\ge j_1\Rightarrow \left|
{f_{n_{m_{j_0 } } } (x_{m_j } )-f(x)} \right|\le \left| {f_{n_{m_{j_0 } } }
(x_{m_j } )-f_{n_{m_{j_0 } } } (x)} \right|+\left| {f_{n_{m_{j_0 } } }
(x)-f(x)} \right|<\raise0.7ex\hbox{$\varepsilon $} \!\mathord{\left/
{\vphantom {\varepsilon
2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$},\]
which implies
\[
\left| {f(x_{m_j } )-f(x)} \right|\ge \varepsilon -\left| {f_{n_{m_{j_0 } }
} (x_{m_j } )-f(x)} \right|\ge \raise0.7ex\hbox{$\varepsilon $}
\!\mathord{\left/ {\vphantom {\varepsilon
2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}\;\;\forall j\ge
\max \left( {j_0 ,j_1 } \right).
\] Then, particularly, $f(x_{m_j } )_j $ does not converge to $f(x)$. QED.
%%%%%
%%%%%
\end{document}