-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy path60-00-BetaRandomVariable.tex
55 lines (51 loc) · 1.33 KB
/
60-00-BetaRandomVariable.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{BetaRandomVariable}
\pmcreated{2013-03-22 11:54:30}
\pmmodified{2013-03-22 11:54:30}
\pmowner{mathcam}{2727}
\pmmodifier{mathcam}{2727}
\pmtitle{beta random variable}
\pmrecord{11}{30530}
\pmprivacy{1}
\pmauthor{mathcam}{2727}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{60-00}
\pmsynonym{beta distribution}{BetaRandomVariable}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
%%%%\usepackage{xypic}
\begin{document}
$X$ is a \textbf{beta random variable} with parameters \textbf{a and b} if\\
\par
$f_X(x) = \frac{x^{a-1} (1-x)^{b-1} }{\beta(a,b)}$, $x \in [0,1]$ \\
\par
Parameters:\\
\par
\begin{list}{$\star$ }{}
\item $a > 0$
\item $b > 0$
\end{list}
\par
Syntax:\\
\par
$X\sim Beta(a,b)$\\
\par
Notes:\\
\par
\begin{enumerate}
\item $X$ is used in many statistical models.
\item The function $\beta: R\times R \to R$ is defined as $\beta(a,b) = \int_{0}^{1}{x^{a-1} (1-x)^{b-1} dx}$. $\beta(a,b)$ can be calculated as $\beta(a,b) = \frac {\Gamma(a) \Gamma(b) } {\Gamma(a+b)}$ (For information on the $\Gamma$ function, see the gamma random variable)
\item $E[X] = \frac{a}{a+b}$
\item $Var[X] = \frac{ab}{(a+b+1)(a+b)^2}$
\item $M_X(t)$ not useful
\end{enumerate}
%%%%%
%%%%%
%%%%%
%%%%%
\end{document}