-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy path60-00-Moment.tex
52 lines (50 loc) · 2.25 KB
/
60-00-Moment.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{Moment}
\pmcreated{2013-03-22 11:53:54}
\pmmodified{2013-03-22 11:53:54}
\pmowner{CWoo}{3771}
\pmmodifier{CWoo}{3771}
\pmtitle{moment}
\pmrecord{11}{30515}
\pmprivacy{1}
\pmauthor{CWoo}{3771}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{60-00}
\pmclassification{msc}{62-00}
\pmclassification{msc}{81-00}
\pmdefines{central moment}
\pmdefines{skewness}
\pmdefines{kurtosis}
\pmdefines{platykurtic}
\pmdefines{leptokurtic}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
%%%%\usepackage{xypic}
\begin{document}
\textit{Moments}\\
\par
Given a random variable $X$, the \textbf{$k$th moment} of $X$ is the value $E[X^k]$, if the expectation exists.\\
\\
Note that the expected value is the first moment of a random variable, and the variance is the second moment minus the first moment squared.\\
\par
The $k$th moment of $X$ is usually obtained by using the moment generating function.
\par
\par
\textit{Central moments}\\
\par
Given a random variable $X$, the \textbf{$k$th central moment} of $X$ is the value $E\big[(X-E[X])^k\big]$, if the expectation exists. It is denoted by $\mu_k$.\\
\\
Note that the $\mu_1=0$ and $\mu_2=Var[X]=\sigma^2$. The third central moment divided by the standard deviation cubed is called the \emph{skewness} $\tau$: $$\tau=\frac{\mu_3}{\sigma^3}$$ The skewness measures how ``symmetrical'', or rather, how ``skewed'', a distribution is with respect to its mode. A non-zero $\tau$ means there is some degree of skewness in the distribution. For example, $\tau>0$ means that the distribution has a longer positive tail.
\par
The fourth central moment divided by the fourth power of the standard deviation is called the \emph{kurtosis} $\kappa$:
$$\kappa=\frac{\mu_4}{\sigma^4}$$ The kurtosis measures how ``peaked'' a distribution is compared to the standard normal distribution. The standard normal distribution has $\kappa=3$. $\kappa<3$ means that the distribution is ``flatter'' than then standard normal distribution, or \emph{platykurtic}. On the other hand, a distribution with $\kappa>3$ can be characterized as being more ``peaked'' than $N(0,1)$, or \emph{leptokurtic}.
%%%%%
%%%%%
%%%%%
%%%%%
\end{document}