-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy path60-00-PropertiesOfExpectedValue.tex
118 lines (95 loc) · 2.94 KB
/
60-00-PropertiesOfExpectedValue.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{PropertiesOfExpectedValue}
\pmcreated{2013-03-22 16:16:05}
\pmmodified{2013-03-22 16:16:05}
\pmowner{Andrea Ambrosio}{7332}
\pmmodifier{Andrea Ambrosio}{7332}
\pmtitle{properties of expected value}
\pmrecord{6}{38378}
\pmprivacy{1}
\pmauthor{Andrea Ambrosio}{7332}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{60-00}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
1) \emph{(normalization) } Let $X$ be almost surely constant random
variable, i.e. $\Pr \left\{ X=c\right\} =1$; then $E\left[ X\right] =c$.
2) \emph{(linearity) } Let $X$, $Y$ be random variables such that $E\left[
\left\vert X\right\vert \right] <\infty $ and $E\left[ \left\vert
Y\right\vert \right] <\infty $ and let $a$, $b$ be real numbers; then $E%
\left[ \left\vert aX+bY\right\vert \right] <\infty $ and $E\left[ aX+bY%
\right] =aE\left[ X\right] +bE\left[ Y\right] $.
3) \emph{(monotonicity) } Let $X$, $Y$ be random variables such that
$\Pr \left\{ X\leq Y\right\} =1$ and $E\left[ \left\vert X\right\vert \right]
<\infty $, $E\left[ \left\vert Y\right\vert \right] <\infty $; then $E\left[
X\right] \leq E\left[ Y\right] $.
\begin{proof}
1) Let's define%
\[
F=\left\{ \omega \in \Omega :X\left( \omega \right) =c\right\} ;
\]
Then by hypothesis
\[
\Pr \left\{ \Omega \backslash F\right\} =0
\]
and
\[
\Pr \left\{ F\right\} =1.
\]
We have:
\begin{eqnarray*}
E[X] &=&\int_{\Omega }X\left( \omega \right) dP \\
&=&\int_{\Omega \backslash F}X\left( \omega \right) dP+\int_{F}X\left(
\omega \right) dP \\
&=&\int_{F}X\left( \omega \right) dP \\
&=&\int_{F}cdP \\
&=&c\Pr \left\{ F\right\} =c.
\end{eqnarray*}
2) \textit{[to be done]}.
3) Let's define%
\[
F=\left\{ \omega \in \Omega :X\left( \omega \right) \leq Y\left( \omega
\right) \right\} ;
\]
Then by hypothesis
\[
\Pr \left\{ \Omega \backslash F\right\} =0
\]
and
\[
\Pr \left\{ F\right\} =1.
\]
We have, keeping in mind property 2),
\begin{eqnarray*}
E[Y]-E[X] &=&E[Y-X] \\
&=&\int_{\Omega }\left[ Y\left( \omega \right) -X\left( \omega \right) %
\right] dP \\
&=&\int_{\Omega \backslash F}\left[ Y\left( \omega \right) -X\left( \omega
\right) \right] dP+\int_{F}\left[ Y\left( \omega \right) -X\left( \omega
\right) \right] dP \\
&=&\int_{F}\left[ Y\left( \omega \right) -X\left( \omega \right) \right]
dP\geq 0.
\end{eqnarray*}
\end{proof}
%%%%%
%%%%%
\end{document}