-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy path60A10-RelationBetweenAlmostSurelyAbsolutelyBoundedRandomVariablesAndTheirAbsoluteMoments.tex
140 lines (114 loc) · 4.08 KB
/
60A10-RelationBetweenAlmostSurelyAbsolutelyBoundedRandomVariablesAndTheirAbsoluteMoments.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{RelationBetweenAlmostSurelyAbsolutelyBoundedRandomVariablesAndTheirAbsoluteMoments}
\pmcreated{2013-03-22 16:14:33}
\pmmodified{2013-03-22 16:14:33}
\pmowner{Andrea Ambrosio}{7332}
\pmmodifier{Andrea Ambrosio}{7332}
\pmtitle{relation between almost surely absolutely bounded random variables and their absolute moments}
\pmrecord{8}{38346}
\pmprivacy{1}
\pmauthor{Andrea Ambrosio}{7332}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{60A10}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
Let $\{\Omega ,E,P\}$ a probability space and let $X$ be a random
variable; then, the following are equivalent:
1) $\Pr \left\{ \left\vert X\right\vert \leq M\right\} =1$ \ i.e. $X$ is
absolutely bounded almost surely;
2) $E[\left\vert X\right\vert ^{k}]\leq M^{k}$ \ \ \ \ \ \ $\forall k\geq
1,k\in N$
\begin{proof}
1) $\Longrightarrow $ 2)
Let's define%
\[
F=\left\{ \omega \in \Omega :\left\vert X\left( \omega \right) \right\vert
>M\right\} ;
\]
Then by hypothesis
\[
\Pr \left\{ \Omega \backslash F\right\} =1
\]
and
\[
\Pr \left\{ F\right\} =0.
\]
We have:
\begin{eqnarray*}
E[\left\vert X\right\vert ^{k}] &=&\int_{\Omega }\left\vert X\right\vert
^{k}dP \\
&=&\int_{\Omega \backslash F}\left\vert X\right\vert
^{k}dP+\int_{F}\left\vert X\right\vert ^{k}dP \\
&=&\int_{\Omega \backslash F}\left\vert X\right\vert ^{k}dP \\
&\leq &\int_{\Omega \backslash F}M^{k}dP \\
&=&M^{k}\Pr \left\{ \Omega \backslash F\right\} =M^{k}.
\end{eqnarray*}
2) $\Longrightarrow $ 1)
Let's define
\begin{eqnarray*}
F &=&\left\{ \omega \in \Omega :\left\vert X\left( \omega \right)
\right\vert >M\right\} \\
F_{n} &=&\left\{ \omega \in \Omega :\left\vert X\left( \omega \right)
\right\vert >M+\frac{1}{n}\right\} \text{ \ }\forall n\geq 1.
\end{eqnarray*}
Then we have obviously $F_{n}\subseteq F_{n+1}$ (in fact, if $\omega \in
F_{n}\Longrightarrow \left\vert X\left( \omega \right) \right\vert >M+\frac{1%
}{n}>M+\frac{1}{n+1}\Longrightarrow \omega \in F_{n+1}$) and $%
F=\bigcup_{n=1}^{\infty }F_{n}$ (in fact, let $\omega \in F$; let $%
N=\left\lceil \frac{1}{\left\vert X\left( \omega \right) \right\vert -M}%
\right\rceil $; then $\left\vert X\left( \omega \right) \right\vert >M+\frac{%
1}{N}$, that is $\omega \in F_{N}$); this means that%
\[
F=\lim_{n\rightarrow \infty }F_{n}
\]
in the meaning of \PMlinkname{sets sequences convergence}{SequenceOfSetsConvergence}.
So \PMlinkname{the continuity from below property}{PropertiesForMeasure} of probability can be applied:
\[
\Pr \left\{ F\right\} =\Pr \left\{ \lim_{n\rightarrow \infty }F_{n}\right\}
=\lim_{n\rightarrow \infty }\Pr \left\{ F_{n}\right\} .
\]
Now, for any $k\geq 1$,
\begin{eqnarray*}
M^{k} &\geq &E\left[ \left\vert X\right\vert ^{k}\right] \\
&=&\int_{\Omega }\left\vert X\left( \omega \right) \right\vert ^{k}dP \\
&=&\int_{\Omega \backslash F_{n}}\left\vert X\left( \omega \right)
\right\vert ^{k}dP+\int_{F_{n}}\left\vert X\left( \omega \right) \right\vert
^{k}dP \\
&\geq &\int_{F_{n}}\left\vert X\left( \omega \right) \right\vert ^{k}dP \\
&\geq &\int_{F_{n}}\left( M+\frac{1}{n}\right) ^{k}dP \\
&=&\left( M+\frac{1}{n}\right) ^{k}\Pr \left\{ F_{n}\right\} .
\end{eqnarray*}
that is%
\[
\Pr \left\{ F_{n}\right\} \leq\left( \frac{M}{M+\frac{1}{n}}\right) ^{k}\text{
\ for any }k\geq 1
\]
so that the only acceptable value for $\Pr \left\{ F_{n}\right\} $ is
\[
\Pr \left\{ F_{n}\right\} =0
\]
whence the thesis.
\end{proof}
Acknowledgements: due to helpful discussions with Mathprof.
%%%%%
%%%%%
\end{document}