-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy path60A99-MultidimensionalChebyshevsInequality.tex
70 lines (58 loc) · 2.6 KB
/
60A99-MultidimensionalChebyshevsInequality.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{MultidimensionalChebyshevsInequality}
\pmcreated{2013-03-22 18:17:55}
\pmmodified{2013-03-22 18:17:55}
\pmowner{daniWk}{21206}
\pmmodifier{daniWk}{21206}
\pmtitle{Multidimensional Chebyshev's inequality}
\pmrecord{5}{40916}
\pmprivacy{1}
\pmauthor{daniWk}{21206}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{60A99}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
Let $X$ be an N-dimensional random variable with mean $\mu=\mathbb{E}[X]$ and covariance matrix $V=\mathbb{E}\left[ \left( X-\mu\right) \, \left( X-\mu\right)^T\right]$.
If $V$ is invertible (i.e., strictly positive), for any $t>0$:
\[ \Pr\left( \sqrt{\left( X-\mu\right)^T \, V^{-1} \, \left( X-\mu\right) } > t \right) \le \frac{N}{t^2} \]
{\em Proof:}
$V$ is positive, so $V^{-1}$ is.
Define the random variable
\[ y = \left( X-\mu\right)^T \, V^{-1} \, \left( X-\mu\right) \]
$y$ is positive, then Markov's inequality holds:
\[ \Pr\left( \sqrt{\left( X-\mu\right)^T \, V^{-1} \, \left( X-\mu\right) } > t\right) = \Pr\left( \sqrt{y} > t\right) =\Pr\left( y > t^2 \right) \le \frac{\mathbb{E}[y]}{t^2} \]
Since $V$ is symmetric, a rotation $R$ (i.e., $R\, R^T = R^T\, R = I$) and a diagonal matrix $D$ (i.e., $i\neq j \, \Rightarrow \, D_{i,j}=0$) exist such that
\[ V = R^T \, D \, R \]
Since $V$ is positive $D_{ii}>0$.
Besides
\[ V^{-1} = R^{-1} \, D^{-1} \, (R^T)^{-1} = R^T \, D^{-1} \, R \]
clearly $\left[ D^{-1}\right]_{ii} = \frac{1}{D_{ii}}$.
Define $Z = R \, \left( X-\mu\right)$.
The following identities hold:
\[ \mathbb{E}\left[ Z \, Z^T \right] = R \,\mathbb{E}\left[ \left( X-\mu\right) \, \left( X-\mu\right)^T \right] \, R^T = R \, R^T \, D \, R \, R^T = D \quad \Rightarrow \quad \forall i \quad \mathbb{E}\left[ Z_i^2 \right] = D_{ii} \]
and
\[ y = Z^T \, R \, V^{-1} \, R^T \, Z = Z^T \, D^{-1} \, Z = \sum\limits_{i=1}^N \frac{Z_i^2}{D_{ii}} \]
then
\[ \mathbb{E} [y] = \sum\limits_{i=1}^N \frac{\mathbb{E}\left[ Z_i^2 \right] }{D_{ii}} = N \]
%%%%%
%%%%%
\end{document}